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1.0 Introduction

The CRRES program investigated earth plasma environment by active experiments in
which metal vapors were injected into the upper atmosphere and magnetosphere. The
vapor clouds perturb the ambient ionospheric/magneospheric environment and the effects

could be monitored by passive observing instruments. Our part of the CRRES program,
the Artificial Plasma EXperiment program, was a ground based and aircraft based
investigation to observe artificial chemical releases by optical techniques.

The CRRES satellite was in a highly elliptical orbit with apogee above 30,000 km and this

orbit permitted the injection of the chemical release clouds at low altitude near perigee and at
high altitude near apogee. During the f'trst CRRES campaign in which we participated, the
releases took place at higher altitude at and near apogee. These experiments were intended
to probe the magnetosphere in the equatorial region at an orbit altitude of about 5Re. This
the so called "high altitude" campaign took place in the winter of 1991 with most releases
occurring in January and a few in February. The major goals of these releases can be
summarized as follows:

1. Stimulation of fast ambient electron/ion precipitation by the injection of cold plasma into
the magnetosphere.

2. Studying the interaction of high velocity plasma clouds with the ambient environment
electric and magnetic field and cold plasma.

In perigee region of the orbit the satellite is waveling at full orbital velocity. Releases made
at full orbital velocity carry a great deal of momentum. Releases near perigee therefore
were useful for studying the interactions between fast ion streams and the ionosphere. The
major goals of these types of experiments were as follows:

1. Studying the momentum interchange of the ions released at orbital velocity into the
ionosphere.

.

Stud.ying. the behavior of plasmas simultaneously in conjugate hemispheres. The fast

moving ions were able to propagate along the field line to the other hemisphere because
of the gradient B effects thus the method permitted the painting of a field line with Ba
ions.

3. Using the ion clouds to modulate the radio wave propagation properties of the
ionosphere.

2.0 Description of the Investigation

2.1 The 1991 High Altitude Campaign

The Lockheed group participated heavily in the CRRES high altitude campaign in January
and February 1991. A field station was manned at Arecibo Puerto Rico with dual imaging
capability. These cameras operated in the filtered mode and the filters could be changed.
Most data was obtained with the ionized barium filter. In figure 1 we are including a
collage of images of one of the Barium releases recorded by the camera at Arecibo. Note
that this cloud was observed for several hours after release.

In addition to performance of ground based observations the Lockheed team supported the
CRRES mission by simultaneously participating in the activities at the Satellite Control
Center in Sunnyvale California. The release commands were given from here. Some of
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the high altitude releases had very complex release conditions. In addition to weather

conditions at the optical sites the situation regarding the magnetic activity in the
magnetosphere had to be taken into account.

For observation of the auroras at the end of the field line there were two instrumented
aircrafts. On one of these aircrafts we have installed a low light level auroral camera. This
camera was operated to support the entire high altitude campaign.

The CRRES Lithium releases were intended as cold plasma seeding experiments. It was

proposed several years ago that when cold plasma was injected into a population of stably
trapped energetic particles, waves would be produced which would perturb the trapped
particles. The particles would precipitate, and the precipitation would be observable
optically because of the aurora produced. The experiment was intended to test the cold

plasma induced wave particle precipitation hypothesis. To conduct a successful experiment
it was realized that very low ambient cold plasma density were needed at the satellite so that

the plasma injection would represent a significant increase in the local ambient cold plasma.
This generated a requirement of low quiescent ambient cold plasma density. The

University of Iowa plasma wave instrument on CRRES satellite provided the monitoring
capability of the cold plasma density at the satellite. Arrangements were made so that
display capability was available for cold plasma monitoring at the Satellite Test Center.

Dr. Roger Anderson, the PI on the Iowa experiment, was assisting in the monitoring
activity.

Another important parameter was the intensity of the trapped energetic protons and
electrons. There were two instruments which monitored energetic particles. One of them

was the U. S. Air Force Phillips Laboratory experiment on the satellite with principal
investigator Dr. Dave Hardy. The other hot particle experiment was operated by our
colleagues at the Lockheed Palo Alto Research laboratories. Both of these experiments had
adequate sensitivity to see particles in the intensity range of faint auroras. Both
experiments were supported by the PI institutions during the entire high altitude release
campaign.

The Lockheed team was at the Satellite Test Center during operation periods of the winter
campaign and acted in a capacity of coordinating requirements and directing the releases.

Another set of high altitude releases G2, G3, and G4 were intended to compare the
behavior of small barium clouds in the varying environment of different regions of the

magnetosphere from low altitude, to regions just within the plasmapause, to regions just
outside of the plasma pause. Thus the three small barium clouds were placed at three
different geocentric distances. G2 and G3 releases were performed as planned.
Observations were made from a number of observation sites. The weather permitted the
observation at more than the minimum number of sites required for triangulation. The last

release in this series was G4 which had to be released just outside the plasma pause. We
followed the technique of measuring the position of the plasma pause on the inbound part
of the orbit and used that data to predict the release time. The release command needed to

be given about 30 minutes before actual release to permit the separation of the ejected
camster from the main body of the satellite. Unfortunately, this delay ruled out the direct
use of the instantaneous in situ measurements and invariably we needed to predict from the
data taken during the prior orbit. In general it was found that prediction from orbit to orbit
gave fairly reliable results. In the case of the G4 cloud, however, the technique of
predicting let us down and the G4 cloud was released exactly on the plasmapause and not
outside of it as it had been intended.



The G2, G3, andG4 cloudsweretrackedby severalobservingstations. The datawas
collectedandtheG2 andG4cloudpositionsweretriangulatedby our team. TheG3 cloud
wastriangulatedby Mary Miller of GoddardSpaceflightCenter.Thecloudmotionswere
determinedand thecloudmotionwasrelatedto parametersof theambientenvironment.
Fuselieretal., 1994(pre-printenclosed).

During a prior program, the Active Magnetospheric Particle Tracing Experiment (AMPTE),
while performing a release experiment in the geomagnetic tail we detected a sudden change
in the external magnetic field at the cloud (Mende et al., 1989) and it was suggested that the
plasma cloud might have induced a small substorm. It was thought that testing the validity
of this suggestion would have significant impact on the understanding of magnetospheric
substorms and would be of high scientific priority. In the latter phases of mission planning
it was therefore decided to use two of the large canister barium releases to try to induce a
substorm in a manner similar to the AMPTE tail release. G10 and G8 were reserved for

such barium releases and they were performed in the magnetospheric tail. Both releases

seemingly created some effect in the aurora which was monitored by aircraft borne
instruments near the foot of the magnetic field line. Directly following the performance of
the experiment, it was thought that the auroral disturbance was related to the release and the

experiment was successful. However, during the months following the experiments we
have scrutinized the data and found that the location and timing of the auroral disturbance
was not consistent with the view that there was connection between the releases and the
aurora.

The G-5, G-6, and G-7 investigations all involved release of two large canisters near
(+/- 1.5 hours) local midnight at high altitude (r/Re > 5.5). The objective of the G-7
release was the direct observation of released lithium by in-situ ion mass spectrometers to
provide new insight into ion transport and acceleration processes acting in the
magnetosphere. The primary objective of the G-5 release was to see if the increase in local

plasma density associated with the release would create an artificial aurora as predicted by
Kennel and Petschek (1966). The primary objective of the G-6 release was to see if the

increase in local plasma density associated with the release would create ion cyclotron
waves that caused ion precipitation as predicted also by Kennel and Petschek (1966).

There were extensive optical observing (including aircraft) and geophysical condition
restraints on the G-5 and G-6 releases. The physical constraints the G-5 and G-6 releases
required CRRES apogee to be over eastern North America, and that there be indications

from real time monitors of geophysical conditions that the particle energy density near
synchronous orbit was increasing. The physical, as opposed to the geophysical,
constraints on the G-5 and G-6 release allowed for approximately one release opportunity
every two days for about 12 days in January and February of 1991. Obviously there were
only a few selected time intervals where the relative positions of the DE-1, Akebono, and
CRRES satellites were suitable for the G-7 release. Because the geophysical condition
constraints on the G-5 and G-6 releases were so restrictive, it was decided to field the

aircraft and ground observers and prepare for a release at each opportunity.

We used software developed especially for the CRRES program to determine the relative

positions of the DE -1, CRRES, and Akebono satellites during each of the release
opportunities for the G-5 and G-6 experiment. It was found that the position of the DE -1
spacecraft was most acceptable for the release opportunity on January 13, 1991.
Acceptable release windows for the G-7 experiment were also identified in February and on
January 15, 1991. The January 15 release required operations of the CRRES spacecraft
for an extended period of time in the Earth's shadow. On January 11 and 12, in
consultations with the Project Scientist, Dr. David Reasoner, Ball Aerospace personnel and
a representative of Phillips Laboratory, it was decided the risks to the spacecraft associated



with theJanuary15releaseweretoohigh andit waseliminatedfrom consideration.The
Februaryreleaseopportunitieswerealsoruledoutbecause,at thetime,theprojectwanted
to completeall releasesinJanuaryto avoidtheexpenseof aFebruaryfield campaign.The
January 13 releasefor the G7 releasewasalso favored becauseof concernover the
continuedoperationof theDE -1 spacecraft. It was decided that the G-7 release would be
made on January 13 independent of the geophysical or observing conditions.

The G-7 release was made at 07:05 universal time when CRRES was just past apogee and
moving toward the dawn side of the magnetosphere. The natural motion of the magnetic
field line transports cold ions dawnward toward the plane of the DE -1 orbit. DE -1

crossed the invariant latitude of the release (67.7 degrees) at 09:40 UT. The photo
ionization time for lithium is on the order of 1 hour. During the hour required for the bulk

of the lithium to photo ionize, the cloud of neutral lithium expands across and along
magnetic field lines. Once photo ionized, lithium ions move along magnetic field lines.

At the time of the release the CRESS satellite was at an altitude of-33,000 km. Depending
on the additional energy acquired from plasma wave heating or other acceleration processes
lithium ions could have reached the location of DE -1 from .4)8:40 when DE -1 was at

62.5 degrees invariant latitude and -20,000 km altitude to ~ 10:40 ( 72 degrees invariant
latitude and -22,000 km altitude). Data was acquired on DE -1 during this interval in a
special mode designed to maximize the sensitivity for detecting 7Li +.

It was not possible to recover the data acquired on January 13 from the tape recorder on

DE -1. The DE -1 satellite was near the end of its life. A special mode, designed to
maximize the sensitivity of the SMS instrument to lithium ions was developed and up-
linked to the Akebono satellite. However, no useful data were acquired by the Akebono
satellite in support of the G-7 release. The on board RAM memory chip in the SMS
instrument on Akebono experienced an upset event on January 10, shortly after the
regularly scheduled RAM check procedure. The problem with SMS operations was not
recognized until January 16 shortly after the next scheduled RAM check. The limited
Instrument health and safety monitoring is integral to the operation of the Akebono satellite.

The Japanese do not rely on professional operators for scientific satellites. They use
members of the various instrumental teams to command and control the satellite. They
accept the inevitable loss of data associated with the reduced operating costs. Useful
Akebono data were also not acquired on January 18 in support of the G-5 lithium release.
Normal operations had not yet been re-established after the identification of the SMS
instrument RAM problem noted above.

In summary, no lithium was detected from the DE -1 or Akebono space based ion mass
spectrometers from the G-5, G-6, and G-7 releases. The lack of detection was the result of

problems associated with satellite systems at the end of their useful life (Dynamics
Explorer) and operational limitations associated with the low cost satellite operations and
telemetry acquisition systems used by the Japanese (Akebono). To be fair to the Japanese,
it must be pointed out that the probability of detection of lithium ions in the dusk side

magnetosphere was minimal at best. For lithium ions to drift dusk-ward after the release,
they would have had to acquire energies of several keV. For this reason we did not request
special, extra cost, operations and data acquisition in support of the CRRES chemical
releases from the Akebono operators.

2.2 Other Coordinated High Altitude Campaign Observations:

In the course of obtaining the data from the various CRRES releases, particularly those
that required specific geophysical conditions, a large body of coordinated observations

were obtained from the then active suite of space and ground based instruments designed to
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monitor aspectsof themagnetosphere,ionospheresystem.Thesoftwarewedevelopedto
identify the besttimesfor chemicalreleaseswasusedafter the releases to identify times
during which extensive satellite data were acquired, and when the satellites were sampling
nearly contiguous magnetic field lines. One such event, on February 18, 1991, was
particularly interesting. The magnetosphere was quiet at this time and had been quiet (Kp *
1+) for more than 24 hours. This provided an opportunity to characterize the quiet aurora

zone and polar cap plasmas. We assembled the data and presented them as a poster paper at
the 1991 Fall Meeting of the American Geophysical Union (Persoon et al., 1991).

During the January and February 1991 campaign, the magnetospheric conditions were
monitored in real time prior to release in an attempt to predict conditions for each release.

Data acquired in addition to those on the CRRES spacecraft were from the extensive array
of ground and aircraft optical sites as well as the Millstone Hill Radar facility. Mende et al.
(1991) have pointed out that during the campaigns excellent sets of data were gathered
which characterized the aurora, the simultaneous particle and field measurement at the
satellite and the accompanying convection in the ionosphere during various conditions.
The times over which these data were acquired are given in Table 1, below.



Table1. OBSERVATIONPERIODSduringwhichExtensiveGEOPHYSICALDATA
wereCOLLECTED.

Day Observati90 Interval Release Times

Jan 13, 1991 0534- 0827 G-2 02:17:00

G-7 07:05:00

Jan 15, 1991 0536 - 0954 G-3 04:11:00

Jan 16, 1991 0500- 0730 G-4 06:25:00

Jan 18, 1991 0225- 0700 G-5 05:20:00

Jan 20, 1991 0304 - 0811 G-10 05:30:00

Jan 22, 1991 0524 - 0843 none

Feb 10, 1991 2350 (2/9/91)- 0600 none

Feb 12, 1991 305 - 0505 G-6 04:15:00

Feb 14, 1991 243- 0730 none

Feb 17, 1991 0009- 0500 G-8 03:30:00
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2.3 PerigeeCaribbeanCampaign(Summer1991)

As statedearlierbariumreleaseswhichwereperformedatperigeehadthepropertythatthe
ions inheritedthevelocity of thesatelliteat the timeof injection. This velocity which is
about 8 kin/see allows the ions to escapealong the magnetic field and in favorable
situationstravelto theoppositehemisphere.A seriesof experimentsweecarriedoutwhich
hadthisasatechnologicalgoal. In additiontheseexperimentspermittedtheinvestigation
of theinteractionof thefastionswith theambientatmosphere.Our objectivewasto study
theprocessesassociatedwith themomentumdissipationof fastionsin theionosphere.

The Lockheedgroup fieldeda specialair borneFabryPerot Imager. The Fabry Perot
.allowsthedetectionof theDopplervelocity distributionof thebariumions. Theairborne
instrumentwasinstalledonanair force operatedKC-135airplane. Theinstrumentwas
usedto observethebariumcloudsandobtainedhighwavelengthresolutioninterferograms.
Theresultsarediscussedin apaperattachedasAppendixB to this report(Rairdenet al.,1994)

3.0 Conclusions

The CRREShigh latitude releasesdid accomplishthe missiongoal of experimentally
testingvariousactivetechniquesto induceauroralprecipitation.Theeffectivenessof these
techniquesto producetheprecipitationhasnot beenproven. Whenthe lithium releases
took place the geophysical conditions were relatively disturbed and even if some
precipitationenhancementhadtakenplaceit wouldhavebeenimpossibleto detect. At the
time whenthecanisterwasejectedprior to thereleasetheconditionsduring G5 andG6
wereexcellent.Howeverduringthehalf hourbetweencanisterejectionandcloudrelease
thesituationdeteriorated.In ordertoperformthisexperimentandincreasetheprobability
of successit wouldbeessentialto reducethedelaybetweencanisterejectionandrelease.

The small barium releasesG2, G3, and G4, workedextremely well. The datawas
triangulated,analyzedandthepaperis attachedasappendixA of thisreport.

During the Caribbeancampaign our group flew an imaging Doppler Fabry-Perot
interferometeronanaircraft. Datawastakento studytheinteractionof thefastions with
the atmosphere.Theseexperimentswere successfuland showedthat thereareother
complexinteractionsareinvolvedin additiontojust plainclassicalion neutralcollisions.
TheseexperimentsaredescribedbyRairdenet al., 1994(Pre-printenclosed).

Anotherunexpectedbenefitof theCRRESoptical andspacebasedobservationsare the
extensivecoordinateddatasetsobtained. In particularthedatafrom February18,1991are
perhaps the most extensive data set yet acquired during an extended period of
geophysicallyquiet conditions. Prolongedintervalsof quiet geomagneticconditionsare
relatively rare. Theseintervalsaregenerallyignoredin theparticleandfield literature,
becauseof the lack of distinctiveplasmasignatures.Neverthelesstheplasmaconditions
thatobtainduringperiodsof prolongedmagneticquietconditionsareimportantbecause
theyrepresentascloseto abaselevelmagnetosphereaswill everbeobserved.

4.0 Acknowledgments

Dr. DavidReasonerwastheveryeffectiveNASA projectscientistof theCRRESChemical
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Abstract

The Combined Release and Radiation Effects Satellite (CRRES) G-2, G-3, and G-4

ionized and neutral barium cloud positions are triangulated from ground based optical

data. From the time history of the ionized cloud motion perpendicular to the magnetic



field,the late time coupling of the ionized cloud with the coUisionlessambient plasma in

the magnetosphere is investigated for each of the releases. The coupling of the ionized

clouds with the ambient medium is qualitativelyconsistent with predictions from theory

in that the coupling time increaseswith increasing distance from the Earth. Quantitative

comparison with simple theory for the coupling time also yields reasonable agreement.

Other effectsnot predicted by the theory axe discussed in the context of the observations.



1. Introduction

Chemical releases in the ionosphere and magnetosphere are a type of active experi-

ment that is designed to probe the ambient plasma and elucidate the interactions between

newly created plasma and the ambient medium. In early January 1991, a series of barium

releases by the Combined Release and Radiation Effects Satellite (CRRES) were performed

at different altitudes. Each release in the series (identified as G-2, G-3, and G-4) contained

identical amounts of barium (1.7 kg) and were done under similar quiet magnetospheric

conditions (e.g., Kp,-,3- for G-3). The objectives of the releases were to study diamagnetic

cavity formation, unstable velocity distributions, and coupling of the ionized cloud to the

ambient plasma. Table 1 shows the dates, times, geographic coordinates, and altitudes of

the three releases.

Several ground stations participated in the release campaign. Stations in both North

and South America tracked the barium clouds sometimes for periods of over an hour using

image intensified cameras. Individual ground stations were used in a preliminary study

comparing the early time (<1-2 rain) behavior of the barium clouds [Huba et al., 1992]

and in a study concentrating on the early time behavior of the G-2 release closest to the

Earth [Bernhardt et al., 1993].

The early time behavior of a release at the distances of the G-2, -3, and -4 releases

is dominated by the formation and collapse of a diamagnetic cavity. This cavity forms

because a current loop at the edge of the cloud created by the newly ionized barium ions

and cold electrons on the surface of the cloud cancels the magnetic field inside the cloud.

The maximum size of the cavity is attained when the kinetic energy of the release roughly

equals the magnetic energy swept up by the expansion of the cloud [Huba et al., 1992].

Diamagnetic cavities were observed for all three releases in Table 1 [Singer et al., 1991;

Bernhardt, 1992]. However, the cavity that is formed is unstable to several possible plasma

instabilities and the cloud will structure and collapse on a time scale of seconds when it is

still quite dense [Huba et al., 1992]. After this time, the ambient magnetic field penetrates

the cloud and the barium ions striate along this field.

Later time behavior of the ionized barium cloud depends on the size of the per-

turbation in the ambient medium. For large releases far from the Earth, the cloud acts

like a large inertial object. It striates along the magnetic field but continues to move in

the direction of the spacecraft motion at the time of the release, dragging the imbedded

ambient field with it [e.g., Mende, 1973]. For smaller releases closer to the Earth, the
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cloud represents a small perturbation in the ambient medium and is expected to rapidly

couple to the ambient plasma motion. Theoretical study of this later time coupling of

the cloud to the ambient medium suggests a relatively simple interpretation [e.g., Scholer,

1970]. The motional electric field of the cloud created by the differential motion between

it and the ambient medium is transferred along the magnetic field as an A1fven wave at

the local Alfven velocity. The cloud couples to the ambient plasma when this disturbance

has swept up a volume of plasma along the flux tube that has a mass equal to the mass of

the ionized cloud. After this time, the cloud should have approximately the same velocity

as the ambient plasma perpendicular to the ambient magnetic field but will continue to

striate along the magnetic field.

The determination of the late time coupling for the CRRES releases requires com-

bining ground station data using triangulation procedures to determine the cloud position

in space as a function of time. In this paper, triangulation results from the three releases

in Table 1 are presented. From these results, the motions of the clouds are determined

and compared to the simple theory of the later time coupling of the clouds to the ambi-

ent plasma outlined above. Section 2 of this paper contains a description and examples

of the triangulation procedure. Section 3 contains a discussion of the verification of the

triangulation results and the uncertainties in the procedure. Section 4 contains the deter-

ruination of the cloud motion from the triangulated positions and a comparison of the three

releases. Section 5 contains a discussion of the observational results and a comparison of

these results with theory. Section 6 contains the conclusions.

Triangulation Data and Procedure

Although a large number of ground stations participated in the release campaign,

ground station pairs that had large east-west baselines were better suited for the purposes

of this paper (see below). An example of the G-2 release data from such a pair of stations

is shown in Figure 1. This example wiU serve to illustrate the triangulation procedure

used in this study. The procedure is semi-automated in that several computer programs

do most of the computations but key decisions are left to the operator. It is similar to the

procedure employed to triangulate one of the AMPTE magnetospheric tail releases [Mende

et aI., 1989].

The top left-hand panel of Figure 1 shows data from Kosemary Hills, FL (Lat. 29.4

N, Long. 82.5 W) approximately one minute after the O-2 release. These data were

acquired from an image intensified CCD camera with a field of view of 10 ° although the
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full field of view is not shown in Figure I. Bright stars in the image are approximately 5th

magnitude. The orientation of the magnetic field line, the location and direction of motion

of the spacecraft at the time of the release as seen from the Rosemary Hills location are

shown in the upper right-hand pane] of Figure 1. The full field of view of the camera is

shown by the dashed box in that panel. The large, asymmetric, and bright circle in the

upper left hand panel of Figure I is the expanding neutral barium cloud. At the time

of observation, the CRRES spacecraft (large square) was still located in the expanding

cloud and both were moving ,,,fi km/s primarily in the direction of increasing elevation

as shown in the upper right-hand panel. The thin line marked at one point by the cross

is the ionized barium cloud striating along the ambient magnetic field near the release

point. In subsequent images, the neutral cloud expanded, continued to separate from the

ionized cloud, became fainter, and was lost from view approximately 2 min after release.

In contrast, the ionized cloud continued to striate along the field and was tracked for over

10 rain after the release.

The bottom left-hand pane] of Figure 1 shows data from Los Alamos (Breezy Point),

NM (Lat. 35.8 N, Long. 106.2 W) at the same time as the Rosemary Hills image in the

top panel. These data were also from an image intensified CCD camera with a field of view

of 4.5 ° although again, the full field of view is not shown. Stars in the image (for example

near the line in the image) are 8th-gth magnitude. Similar to the image from Rosemary

Hills, the Los Alamos image in the lower panel also shows the neutral cloud well separated

from the ionized cloud that is striating along the magnetic field. Due to the aspect angle

of the observations from Los Alamos (see the lower right-hand pane]), the neutral cloud

appears to be offset from the ionized cloud mainly in the azimuthal direction.

Image pairs from both ground stations were digitised from the original data for as

many nearly simultaneous observations as possible after the initial release time. In the

first part of the triangulation procedure, the star fields in each image pair are identified

using standard star charts. The right ascension and declination of the stars in the field of

view are placed in a computer file and the pixe] locations in the image are identified for

two stars which act as reference stars. The star field is then plotted on the image to verify

the location of other stars and the aspect ratio of the plotted star field is adjusted to fine

tune the fit. The reference stars are then used to linearly interpolate pixe] location on the

image to right ascension and declination in the sky for the second part of the triangulation

procedure.
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To triangulate the ionized part of the cloud that is striating along the magnetic field,

a point at the center of the striation such as the one shown by the cross in the top left-hand

image in Figure 1 is selected. Then, using an estimate for the distance of the ionized cloud

from the Earth (based on the release distance), the computer draws a line segment 0.2

RB long on the image acquired at the second site that corresponds to the line of sight in

the direction of the point chosen on the first image. The center of the line segment is the

estimated distance of the iouized cloud. Continuing with the example, this line is shown

in the bottom left-hand panel of Figure 1. If the estimate of the distance from the Earth

to the cloud is good, then the line should cross the striated cloud in the second image as

illustrated in Figure 1. By selecting the position where the line crosses the center of the

striation in the second image, the triangulated position for a point in the striated cloud is

obtained. This procedure is repeated to determine other positions along the striated cloud.

The entire procedure, including redefining the reference stars, is repeated for other image

pairs from the releases. The end product of the triangulation procedure is a set of points

(in Geographic coordinates) along the center of the ionized cloud for each image pair. This

set should be the locus of points along a magnetic field line in geographic coordinates. For

the G-2 release, it was also possible to triangulate the neutral cloud position and size for

approximately the first two minutes after the release (see Figure 1).

Since the cloud striates along the magnetic field which is approximately north-south,

large east-west baselines are preferred for the triangulation. For these baselines, the line of

sight direction for the first image is nearly perpendicular to the ionized cloud in the second

image as illustrated in Figure 1. For north-south baselines, the line of sight direction would

be nearly parallel to the cloud and the triangulation would be difficult [e.g., Mends etal.,

1989].

Uncertainties in the triangulation procedure increase with increasing altitude of the

release. Choosing station pairs with larger baselines partially compensates for this effect

but the almost 3 R8 difference between the G-2 and G-4 release distances (see Table 1)

is too big to be fully compensated by the available baselines. To illustrate this, Figure 2

shows an image pair from the G-4 release. The format is the same as in Figure 1, with the

left hand panels showing the observations and the right hand panels showing the location of

the magnetic field line and spacecraft as viewed from the observing site. The upper panel

shows an image taken approximately 6.5 vain after the release by an image intensified CCD

camera at Arecibo, PR (Lat. 18.34 N, Long. 66.75 W). The corresponding image from
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Los Alamos (Breezy Point) is shown in the lower panel. The same triangulation procedure

discussed above was used on this image pair to produce the selected point shown by the

cross in the upper panel and the corresponding 0.2 Rs line shown in the lower panel.

Despite the larger baseline used in the G-4 triangulation, it is clear from comparison of

the line segments in the images in the lower panels of Figure 1 and 2 that the uncertainty

in the triangulated cloud location for G-4 will be considerably larger than that for G-2.

Also, uncertainties in the triangulated points from a release will be largest in the

radial direction from the Earth independent of the baseline used. This is because positions

in the planes of the images (perpendicular to the radial direction) are much more accurately

determined than positions perpendicular to that plane. This will have additional effects

on the results (discussed below).

Verification of the Triangulation Procedure

There are several ways to verify the accuracy of the triangulation results. In this

section only two of these ways are considered. Further checks that concern the details of

the interaction of the ambient plasma with the cloud win be discussed in the next section.

The first obvious verification of the triangulation results is to compare the triangu-

lated position of the cloud at (or soon after) the release with the known location of the

CRRES spacecraft. This single point comparison provides a measure of the absolute un-

certainty (or offset) in the triangulated position of the cloud. For the G-2 release (closest

to the Earth), the triangulated position of the cloud at the release time and the spacecraft

position were indistinguishable, indicating an absolute error of less than 30 km (the limit

of the resolution of the G-2 images). The differences in the triangulated and spacecraft

positions for G-3 and G-4 were approximately 70 km. These larger absolute errors reflect

the greater distance of the releases from the Earth when compared to that for the G-2

release.

The second verification is to use the well known fact that the ionized cloud will striate

along the magnetic field after the rapid collapse of the diamagnetic cavity [e.g., Mende,

1973]. Unlike releases in the magnetotail where the model magnetic field is somewhat

uncertain and the release is used at least partially to identify the magnetic field [e.g.,

Mende et al., 1989], the G-2, G-3, and G-4 releases were sufficiently near the Earth and

were done under sumciently quiet conditions to have confidence in the model magnetic

field. Therefore, an additional test of the data that provides some information on the

relative uncertainty in the measured points of the cloud is to compare the model magnetic



field with a least squaresfit through the triangulated points from an image pair. Table 2

shows the results of this comparison for all triangulated data in this study.

For each release in this table, the left hand columns show the time in UT and the

right hand column shows the angle between the model magnetic field (from the CKRES

spacecraft ephemeris) and the least squares fit line through the triangulated points for that

time. The angle can be relatively large (see for example the angle at 062557 UT for G-4)

soon after the release because the line segment is short and the direction inferred from

this segment has a large uncertainty. Angles for the last times listed (for example 022703

UT for G-2) can be also relatively large because the ion cloud becomes faint and difficult

to triangulate. However, for most times, Table 2 shows that the direction of the magnetic

field inferred from the triangulation results agrees quite well with the model magnetic

field direction. On average, the discrepancy is largest for the G-4 release. This is likely

a combination of the decreasing accuracy of the model field and, more importantly, the

greater distance for the G-4 release from the Earth, resulting in larger statistical errors

in the triangulation. Even for this release, the average difference between the model field

and the triangulated field is less than 10 °. This provides confidence that the triangulation

procedure is reasonably accurate.

Cloud Motion

The later time barium cloud motion can be separated into striation along the ambient

magnetic field and motion of the flux tube perpendicular to the ambient magnetic field

direction. Determining the changes in the cloud size along the magnetic field has several

observational problems. First, the the cameras used to image the releases had relatively

small fields of view. In the bottom left-hand panel of Figure 1, it is clear that the entire

ionized cloud along the magnetic field is not within the field of view of the camera. This

problem becomes particularly acute at later times when the cloud subtends an angle of

many degrees in the sky. Ground observers were instructed to track one end of the cloud

after the cloud moved out of the field of view. Triangulation of only the part of the cloud

that was tracked produces an apparent motion along the field with time. A second problem

with the observations is that the image intensity is not calibrated for the cameras used in

this study. Therefore, the apparent length of the cloud even at early times is a function of

the (uncalibrated) images from different sites.

Because of these observational problems, we deconvolve the motion along and perpen-

dicular to the ambient magnetic field direction and concentrate only on the latter motion.



In terms of the late time coupling of the cloud to the ambient plasma, the latter motion

is more important sincethe barium ions are essentiallyfree to move along the magnetic
field.

The deconvolution is accomplished by rotating the coordinate system from the orig-

inal geographic coordinates to a system where the magnetic field direction (defined by the

least squares fit through the triangulated data) is along the z-axis. An additional rotation

is also made so that the y-axis is along the direction of the component of the spacecraft

velocity (at release) that is perpendicular to the magnetic field (after the co-rotational ve-

locity is accounted for). The x-axis completes the right-handed coordinate system. Finally,

this coordinate system is translated so that the origin is at the spacecraft location at the

release time. It is important to note that this coordinate system is non-inertial because the

original geographic coordinate system is co-rotating with the Earth. Thus, the coordinate

rotation must be done for the triangulated data from each image pair separately.

For each image pair in a release, the triangulated points along the magnetic field

are projected into the x-y plane of this new coordinate system. Motion of the flux tube

perpendicular to the magnetic field is then determined by the change in position of the

clusters of points in the x-y plane as a function of time.

These projected points for the G-2, G-3, and G-4 releases are shown in Figures 3,

4, and 5, respectively. The component of the spacecraft velocity perpendicular to the

magnetic field at the time of release (in units of 0.01 Re = 1 kin/s) is shown in the

figures by the arrow along the y-axis. Short arrows in the figures show the radial direction

from the Earth. The G-2 and G-3 releases occurred on the outbound part of the CRRES

orbit so that the radial direction and spacecraft velocity are in similar directions. The

G-4 release occurred on the inbound part of the CRRES orbit so that the radial direction

and the spacecraft velocity are in nearly opposite directions. The corotation direction is

perpendicular to the radial direction. In the G-2 and G-4 releases, the corotation direction

was nearly in the X direction in Figures 3 and 5. However, for the G-3 release, the

corotation direction has a substantial component in the y direction in Figure 4.

For the G-2 release, it was possible to triangulate the center and outer radius of

the neutral cloud for approximately the first 2 minutes. In the last image pair at 021903,

the center of the neutral cloud was not in the field of view of the camera at one of the

observing sites and had to be estimated from the curvature of the part of the outer radius

of the neutral cloud in the field of view. The velocity of the neutral cloud is expected
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to be that of the spacecraft velocity at the releasetime. Figure 3 shows that the G-2

neutral cloud moved approximately in the +y direction in agreement with expectations.

(The magnitude of the cloud velocity is discussed below.) The cloud also expanded with

an expansion velocity of about 1.6 km/s. This velocity is somewhat higher but similar

to previous estimates of the neutral cloud expansion [e.g., Bernhardt et al., 1993]. The

ionized cloud motion is in stark contrast to this neutral cloud motion and expansion.

The ionized cloud initially moved approximately in the direction of the spacecraft velocity

vector for a distance of ,_0.01 Re from the release point and then stopped for the rest of

the approximately 11 minutes of observations. Evidence of the separation of the neutral

cloud and the ionized cloud one minute after the release can be seen in Figure 1. Because

the coordinate system is co-rotating with the Earth, Figure 3 actually shows that after the

first minute, the ionized cloud acquired the co-rotational velocity of the ambient plasma

but the neutral cloud moved with the spacecraft velocity and direction as if there were no

co-rotational forces on it.

For the G-3 release, only the ionized cloud could be tracked. Its motion perpendicular

to the magnetic field in the co-rotating frame is shown in Figure 4. One of the obvious

features of the "clusters" of triangulated points that are projected into the x-y plane in

Figure 4 is that they line up along the radial direction from the Earth. H the statistical

uncertainty in the triangulated position was the same in all directions, then the projected

points would form a true cluster around the least squares position of the magnetic field in

the Figure. However, the uncertainty is not the same in all directions. As discussed above,

the uncertainty in the radial direction is larger. Therefore, the points that form short line

segments for each time period show the uncertainty in the radial direction is on the order of

0.01 Re but it is much smaller perpendicular to that direction. The G-3 ion cloud motion

is significantly different from that for G-2. Because the motion is complicated, the dashed

line connecting the centers of each group of points shows the motion of the average position

of the cloud with time. Considering the motion in the y direction first, Figure 4 shows

that the G-3 cloud moved approximately along the spacecraft velocity vector for the first

1.5 rain and then reversed its motion. It then moved in the -y direction for approximately

another 2.5 rain before stopping its y motion for the rest of the observing time.

The motion in the x direction for the G-3 release is unique to the three releases. The

motion is nearly uniform after the first minute because the distance covered is approx-

imately Constant as is the time between observations (with the exception of a data gap
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between 0416 and 0419 UT). The velocity computed from the change in x position with

time is approximately equal and opposite the co-rotation velocity of the plasma at the G-3

distance, indicating that the cloud was stationary with respect to the rotating Earth.

Like the G-3 release, only the ionized cloud could be tracked for G-4. However its

motion was much less complicated when compared to that of the G-3 release. The G-4

motion perpendicular to the magnetic field is shown in Figure 5. The motion is relatively

simple in that the cloud initially moved away from the release point along the spacecraft

velocity vector direction (also the radial direction) for over 5 minutes after release and

then slowed its y motion for the duration of the observation period. The offset of the

motion in the x direction reftects the 0.01 RB offset in the triangulated and actual release

positions. No motion in the x direction for the entire period indicates that the ionized

cloud was co-rotating with the Earth throughout. "lYiansulatlon beyond 8 rain after the

release was not possible because the cloud became too faint at one of the observation sites

to be reliably tracked.

Using consecutive triangulated y positions and the time between them, the y velocity

of the cloud as a function of time for the three releases was computed. These velocity

profiles are shown in Figure 6. The dashed line in each Imael shows the component of the

spacecraft velocity perpendicular to the magnetic field at the time of the release. Error

bars on the velocity measurements of the ionized clouds are computed from the uncertainty

in the triangulated y position and are based on the scatter of the points for an individual

triangulated position in Fignre8 3, 4, and 5. These error bm-s are smaller than the symbol

size for the G-2 release but increase significantly with increasing release distance from the

Earth. Since the errors are computed using the statistical uncertainty in the location, if

only one point is triangulated, (for example near the beginning of the release), then the

uncertainties in Figure 6 do not fully represent the actual uncertainty in the measurements.

This is apparently the problem with the initial measurements of the G-3 and G-4 releases,

which indicate very low initial velocities.

For the G-2 release, the neutral cloud center could be triangulated reasonably accu-

rately except for the last point at 120 s after the release. For this point, the uncertainty in

the position may be larger than shown because the cloud was dissipating rapidly and the

center had to be estimated from the curvature of the cloud in the field of view. Thus, the

apparent acceleration of the neutral cloud at 120 s is probably not real. In general, the neu-

tral cloud moved away from the release point with the spacecraft velocity, in agreement
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with expectations. This provides additional confidence in the triangulation procedure.

Also for the G-2 release, it is apparent that even with the first velocity measurement one

minute after the release, the ionized cloud had slowed considerably. The velocity rapidly

decays to zero and remains close to that value for the duration of the observations.

The G-3 ionized cloud velocity profile is considerably different from that of the G-2

release. The first velocity point is somewhat below the spacecraft velocity; however, the

basic trend is a positive velocity until 100 s after the release, then the velocity passes

through zero and stays negative until 300 s after the release at which time the velocity

returns to zero for the duration of the observations. The velocities for the last three points

are somewhat suspect because the c-loud was beginning to dissipate and move out of the

field of view of the camera at one of the observing locations.

For the G-4 release, the velocity appears to be higher than the spacecraft velocity

at the release time. We do not have a physical interpretation for the higher velocity.

However, the y velocity is almost entirely along the radial direction (Figure 5), where

the uncertainties in the position are the largest. It is possible that the error bars which

are based only on the standard deviation of the y positions for adjacent times may not

fully represent uncertainties in the positions in this case. This apparent higher velocity

notwithRtanding, the trend in the G-4 release is similar to the early time trends in the

other releases. The release initially moves away with nearly constant velocity and then

stops after approximately 300 s.

Discussion

The time required for a release to acquire the ambient plasma motion is proportional

to the size of the perturbation on ambient medium. Since identical amounts of chemical

were used in the G-2, G-3, and G-4 releases, the size of the perturbation depends only

on the ambient plasma conditions, primarily the ambient density. QuaJltatively, the den-

sity decreases with decreasing distance from the Earth so the time needed to acquire the

ambient plasma motion (in these cases zero velocity in the y direction perpendicular to

the magnetic field and perpendicular to the co-rotating direction) should increase for G-2

through G-4. The observations in Figure 6 are consistent with this expectation. The ver-

ticai dashed lines show where the ionized c]oud velocity is I/e of its initial velocity. These

velocity decay times increase with increasing distance from the Earth. For the G-2 release,

the decay time was estimated by assuming that the velocity decreased linearly with time

from the spacecraft velocity to the first observed velocity. For the G-3 and G-4 releases,
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the initial velocity was assumed to be the spacecraft velocity and the average measured

velocity, respectively.

Quantitative theory suggests that the decay time should be the time required for an

alfven wave to propagate along the ambient field and sweep over a mass equal to the mass

of the ionized cloud [Seholer, 1970]. Assuming that the Alfven velocity does not change

along the field line from the observation point to the ionosphere, then

M

7 =2prAY'. (1)

Where M is the mass of the cloud, A is the cross sectional area of the cloud, p is the

ambient mass density (here we assume protons only), VA is the local Alfven velocity, and

r is the decay time or the time required for the cloud velocity to decrease to 1/e of its initial

value. The factor of 2 comes from the fact that there are Alfven waves launched in both

directions along the magnetic field. A more accurate estimate of r would be obtained by

modeling the change in the aLfven velocity along the magnetic field. However, measurement

uncertainties in Figure 6 suggest that this level of sophistication is not necessary. Each

release contained 1.7 kg of Barium. Assuming that 40% of the released chemical ionized

[Hubs et al., 1992], the mass of the cloud was 700 g. Other quantities in (1) for the 3

releases are in Table 3.

The Alfven velocity and the ambient density in Table 3 were determined from the in

situ magnetic field and plasma wave data and axe probably quite accurate when compared

to other quantities in Table 3. We chose to estimate the cloud radius from the images.

The estimates axe about a factor of 20 times larger than a barium ion gyro-radius at the

release distances and are also larger by about a factor of 4 than the confinement radius

[e.g., Hubs et al., 1992]. Since the decay time is inversely proportional to the square of

the cloud radius, using the gyro-radius or the confinement radius in (1) would result in

decay times of 400 and 20 times larger than those listed in Table 2, respectively. Table

3 shows that the estimated decay time is a factor of 2 larger than the observed decay

time. However, the ratio of the estimated and observed decay times for the three releases

are in reasonable agreement. Therefore, we conclude that, although there is not detailed

agreement between the observations and the predictions from (1), there is good enough

quantitative agreement to conclude that the concept of the coupling of a release with the

ambient medium suggested by Seholer [1970] is reasonable.

Also listed in Table 3 is the Alfven transit time from the equator (at the distance of

the release) to the ionosphere. This transit time was estimated from Mende et al. [1980,
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equation 3], using a dipole magnetic field. It is clear from Table 3 that the time required

for the release to couple to the ambient medium is considerably longer than an Alfven

transit time. In fact, the coupling would require on the order of 10 transit times or many

reflections of the Alfven wave disturbance off the ionosphere. Using the Alfven transit time

and the initial speed of the ionized cloud perpendicular to the magnetic field, the possibility

that an A/fven wave will return to the cloud before the cloud moves a substantial distance

away can be estimated. By multiplying the Alfven transit time by the spacecraft velocity

perpendicular to the magnetic field (5.9, 2.88, and 2.1 km/s for the G-2, G-3, and G-4

releases, respectively) it is apparent that in all three casea I the Alfven wave will return to

the release point at about the same time that the release has moved approximately one

ionized cloud radius away. Thus, the AlDen wave has the possibility of re-encountering

the release in all three cases.

Reflection of the Alfven wave off the ionosphere was considered in the original model

of Scholer [1970]. One of the predictions from this retlection was that the cloud could

over-brake and acquire a velocity in the opposite direction of the original release velocity.

The observations of negative velocities in Figure 6 for the G-3 release may be evidence for

this over-braking.

In addition, the G-3 release was the only release that had a substantial initial velocity

in the corotation direction. Perhaps not by coincidence, the G-3 release was the only release

that exhibited motion counter to the corotation direction. Using the in situ measurement

of the electric field inside and outside of the G-2, G-31 and G-4 reJeases [e.g., Wygant

et al., 1994], we determined that in all three cases, the ambient plasma was corotating.

Therefore, the G-3 release was clearly not moving with the ambient plasma in the X

direction in Figure 5. It is possible that the same over-braking observed in the Y direction

and predicted by Scholer [1970] is responsible for the X motion of this release. However,

further work on the modeling of this and the other releases and the comparison of these

models with the observations in this paper is needed to confirm this possibility.
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Figure Captions

Figure 1. Observations of the CRR_S G-2 barium release (one minute after the

release) from Rosemary Hills, FL (top panel) and Breezy point (Los Alamos), NM (bottom

panel)" The large, asymmetric circle is the expanding barium neutral cloud while the thin

line is the ionlzed cloud. The spacecraft position is shown by the large square. The cross

in the upper panel and the 0.2 RE llne in the lower pane] through the ionized cloud were

usecl in the trianKu/ation technique and are explained in the text.

Figure 2. Observations of the CR_RES G-4 barium release (6.5 rain after the release 1

from Arecibo, PI_ Ctop panel) and Los A]amos, NM (bottom panel). The format is the
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same as in Figure i. This release was much further from the Earth and, at this late time in

the release, no neutral cloud is visible. The 0.2 Re line in the bottom panel is significantly

shorter than in the same panel in Figure 1, indicative of the much further release distance

for the G-4 release.

Figure 3. The position of the ionized and neutral clouds for the G-2 release for sev-

eral observation times. The plane of the plot is perpendicular to the ambient magnetic field

and the y-axis is parallel to the component of the spacecraf_ velocity vector perpendicular

to the magnetic field. The entire coordinate system rotates with the co-rotational velocity

of the plasma. The neutral cloud expands and convects approximately in the direction of

the spacecraft motion while the ionized cloud moved only a short distance from the release

point before stopping for the duration of the observations.

Figure 4. The position of the ionized cloud for the (]-3 release for several observation

times. The format is the same as in Figure 3. 'I_'iangulated positions along the magnetic

field that are projected into this coordinate system form short line segments aligned with

the radial direction from the Earth because of the larger uncertainty in the measurements

in this direction. The G-3 ionized cloud initially moved in the direction of the spacecraft

motion. Later, it reversed it motion before stopping for the duration of the observations.

Figure 5. The position of the ionized cloud for the (]-4 release for several observation

times. The format is the same as in Figures 3 and 4. The (]-4 cloud moved along the

spacecraft velocity vector for several minutes before stopping.

Figure 6. The y velocities of the ionized clouds for G-2, G-3, and G-4. The G-2

neutral cloud moved with at least the spacecraft velocity for as long as it was reliably

observed (the last point may be suspect). The ionized clouds all had the characteristic of

moving at a velocity other than zero but eventually decaying to zero. Decay times for the

three releases are shown by the vertical dashed lines.
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Nanlc

G-2
G-3
G-4

Date

13 Jan1991
15 Jan1991
16 Jan1991

I T'm_

0217:03 UT
0411:00UT
0625:00UT

La6mde

16.9 °
17.9 °
-0.70

Lon_tude
-103.1 °
-97.5o
-53.8o

JAltimcle

6,180 km
15,063 km
23,977 km

/s t ?-



Table 2.

G-2 Release

hmmss

21759
21935
22011
22048
22125
22233
22339
22407

22453
22703

13-Jan-1991

Btri'Bmod
(release)

4.7
1.6
1.3
1.0
2.2
3.3
1.8
2.3
2.6
8.8

G-3 Release
hmmss

41200
41231
41300
41331
41400
41500
41600
41900
42000
42100
42202
42303
42400
42505
42600

15-Jan-1991

Btri*Bmod
(release)

1.9
0.6
1.1
5.3
3.7
0.9
3.0
4.8
4.4
7.0
9.4

10.4
9.0

12.1
9.9

G-4 Release
hmmss

62557
62629
62656
62727
62806
62858
62940
63028
63133
63252

16-Jan-1991

Btri*Bmod
(release)
30.4
14.5

5.6
5.7
6.4

10.7
8.7
6.8

10.1
7.0



Table 3.

Release: G-2 G-3 G-4

Cloud Radius (km)

Alfven velocity (km/s)

ambient density (cm-3)

tau = vel decay time (s)

Ratio

tau observed (s)

observed Ratio

12.8

2400

2075

82

1

40

1

30.

1300

278

205

2.5 :

I00

2.5

64.

780

49

426

5.2

310

7.8

(estimated from images)

( CRRES s/c data)

( CRRES s/c data)

(equation I)

Alfven transit time (s) 3.1 i0.3 25.1
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Ion Doppler Velocity Distributions Observed in Fabry-Perot

Images of CRRES Low-Altitude Barium Releases

R. L. Rairden and S. B. Mende

Lockheed Palo Alto Research Laboratories, Palo Alto, California

M. B. Pongratz

Los Alamos National Laboratory, Los Alamos, New Mexico

Abstract. During the CRRES equatorial low-altitude release campaign of July-August

1991, ion Doppler velocity measurements were recorded by aircraft-based Lockheed

Fabry-Perot imaging instrumentation. The barium releases were typically performed in

sunlight over the morning terminator, at the satellite perigee velocity of > 9 km/sec

nearly perpendicular to the geomagnetic field direction. Velocity profiles early in a

release (t < 5 minutes) show a marked double-peak resulting from ion gyromotion

toward and away from the instrument at close to the release velocity. Modeled ion

Doppler velocity profiles for the particular viewing geometry of each release agree

qualitatively with these measurements. Narrowing of the velocity profiles indicates that

the ion momentum is lost on a time-scale of minutes. Releases at three different

altitudes show a progressive increase in momentum loss rate with decreasing altitude,

consistent with ion-neutral collisional slowing. Monte Carlo calculations of the

momentum loss due to ion-neutral collisions are fitted to the observations, and residual

differences indicate the presence of additional loss mechanisms where energy is

dissipated in collective plasma effects. A sudden dramatic momentum loss is exhibited

in the 100 to 120 second interval following event G-9, the largest chemical release.

(Index terms: 2403 Ionosphere, active experiments
2451 Ionosphere, particle acceleration

2471 Ionosphere, plasma waves and instabilities)

INTRODUCFION

The chemical release portion of the Combined Release and Radiation Effects Satellite

(CRRES) program was designed to further the understanding of a wide variety of

magnetospheric and ionospheric plasma processes. Though originally conceived as a shuttle-

deployed vehicle with a low orbit phase and subsequent boost to geosynchronous transfer orbit

(GTO), circumstances eventually dictated an Arias-Centaur launch of a reduced payload

configuration in July 1990 directly into the final GTO. The twenty-four chemical canisters
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were distributed among several release objectives. Bernhardt [1992] presents an overview of

the CRRES releases and some initial findings.

A first pair of nighttime release experiments was performed in September 1990 at near-

perigee altitudes to investigate Critical Ionization Velocity (CIV) effects [Wescott et al., 1991].

The second campaign, in the winter of 1991, comprised the high-altitude series of

magnetospheric releases which occurred in regions of differing magnetic field strengths and

low ambient plasma densities. The resulting diamagnetic cavities, ion coupling to the magnetic

field, and associated plasma instabilities have been under study [Huba et al., 1992a].

During the summer of 1991 the remaining canisters were expended in a series of near-

perigee releases over the Caribbean observed by several participants at various sites. These

ionospheric releases are characterized by high velocities ( > 9 km/s ) directed nearly

perpendicular to the geomagnetic field. Kinetic instabilities compete with polarization fields in

slowing the introduced material as it ionizes, with the final plasma state being dependent on the

coupling process. Optical measurements during the fast minute are essential in the

investigation of these effects. Later measurements from the network of observing sites are able

to track the barium ions as they paint the field lines (L..-I.3) into the opposite hemisphere, the

objectives being, for example, to determine the weak parallel and transverse electric fields and

to establish how closely the magnetic field lines can be regarded as equipotentials.

In this paper we present and interpret portions of the Lockheed video imaging data from the

summer 1991 low-altitude release experiments. Emphasis is placed on the early evolution (first

five minutes) of the barium ion Doppler velocity distributions, which are unique measurements

obtained through our Fabry-Perot imagery. The ions are found to lose energy more quickly

than predicted from Monte Carlo calculations of ion-neutral collisional slowing alone. Non-

collisional plasma coupling mechanisms are suspected to be responsible for the differences.

The equipment set-up and data gathering operations are described in some detail for the benefit

of those who might be considering Fabry-Perot imaging or airborne geoscience missions in

general.

Subjects not addressed in this paper are the abundance of release products, their motions

transverse to the line of sight, and the longer time scale behavior of the chemical clouds. These

aspects are among the objectives for the optical data from other sites in the observing network.

INSTRUMENTATION AND OPERATIONS

In addition to the numerous ground sites, a total of four aircraft were deployed as

observation platforms for several investigator teams during the CRRES campaigns. These

provided great flexibility in avoiding poor weather conditions and in optimizing the viewing
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geometry for each release. The Lockheed cameras occupied one of three large optical grade

windows on the left side of one of these aircraft, a U. S. Air Force KC- 135.

The optical layout is shown in Figure 1, drawn roughly to scale. Two thermo-electrically

cooled image-intensified CCD video cameras shared a large elliptical gyroscopically stabilized

pointing mirror. The incoming light was intercepted by a dichroic multilayer beamsplitting

mirror which reflected the 455.4-nm singly ionized barium (Ban) image into the narrow field

path, and transmitted the 493.4-nm Bali image through to the widefield camera. Both cameras

were generally operated with narrowband (3.5 nm FWHM) interference filters centered on

those respective wavelengths. A temperature stabilized four-position filter wheel in the optical

path of the narrow field camera carried three solid Fabry-Perot etalons and one vacant aperture.

The equivalent air gap for each etalon and the corresponding free spectral range (FSR) for the

BaII 455.4-nm line are listed in Table 1.

TABLE 1. Fabry-Perot etalons in narrow-field camera

filter wheel, equivalent air gap and flee spectral range.

Position Etalon FSR

1 8-mm 8.5 krn/sec

2 2-mm 34 km/sec

3 0.5-mm 136 km/sec

4 open .....

A hollow cathode barium calibration lamp completes the setup, verifying temperature

stability and giving the precise locations for effectively zero velocity F-P fringes in each etalon.

The calibration beam entered the system by reflection from a white diffusing surface opposite

the source, returning to an uncoated pellicle beamsplitter placed at a 45-degree angle in the

optical path. Ghost images or aberrations introduced by the thin (five micron) peUicle

membrane are negligible.

The co-alignment and relative fields of view for the two cameras are illustrated by starfield

images in Figure 2. The constellation is Orion, viewed in white light (Bali filters removed).

The widefield camera achieves dimensions of 15 by 18.5 degrees using a 50-mm f/1.2 lens,

and a fiber-optic taper to couple the intensified image to a 15-mm CCD. The narrow field

camera uses a 135-mm f/2.0 lens and an untapered fiber-optic coupling for its 3.5 by 4.3

degree view. Both fields are mirror reversed. Realtime pointing operations were accomplished

through commanding biases to the gyro-stabilized pointing mirror using a joystick. The
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stabilization effectively countered small maneuvers by the aircraft, although large heading

changes would drive the mirror into its limit switches. The unvignetted pointing envelope was

approximately 0 to 40 degrees elevation (relative to level flight) and 20 degrees forward to 20

degrees aft, somewhat elevation dependent. Additional system features shown in the images of

Figure 2 are the date and time annotation, and a bar code at the left edge indicating the image
integration time.

Software in a small computer controlled the image integration times for a series of

bracketing exposures or other preprogrammed sequences realfirne commandable at the

keyboard. Computer inputs were time-tagged and logged to disk. It is noted that joystick

inputs were part of an independent system and not tracked or logged. Few stars are

sufficiently bright to be seen through the narrow band filters, so little absolute pointing

information is available. However, this is of no consequence for the primary objectives of

determining barium release initial expansion rates and radial velocity distributions. For

observations several minutes into the release, the general look direction could be derived from

the aircraft heading.

A pair of monitors, a date/time generator, a frame memory unit, a 3/4-inch video recorder

and an 8-mm backup video recorder were installed for each of the two cameras. A microphone

was connected to an audio channel of one video recorder for verbal notations. Other equipment

included image intensifier high-vohage supplies, the calibration lamp power supply, and the

filter wheel controller. All components and cables on the optical bench and in the electronics

racks were strictly required to be securely fastened to withstand the most severe accelerations

which could be imparted by inflight turbulance or ground mishaps.

Radio contact with the ground operations teleconference was maintained on each flight to

indicate readiness to the Project Scientist. The 25-minute interval between canister ejection and

thermite initiation gave adequate time for a release conf'u'mation message to reach the aircraft

well before each event. Due to the extreme cold at altitude, care was required to avoid fogging

or frosting the single-pane fuselage windows. Small warm air blowers were located at each

station, and before each release the windows were wiped with alcohol. Heavy black cloth

shrouded the optical bench area from the cabin operations, and interior lighting was kept

minimal. A popularized account of the flight activities, relating the flavor of the campaign and

additional background information, is reported by Shiner [ 1992].

OBSERVATIONS

The release events and their geographic coordinates are identified in Table 2. The aircraft

track is available as a digital recording of Global Positioning Satellite (GPS) receiver f'Lxes at

two-second intervals. Large canisters were always released in pairs due to CRRES satellite
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dynamical constraints. The small canisters could be released singly, or paired for greater

effect. Large and small canisters contained -5 and ~1.5 kg barium, respectively; Stenbaek-

Nielsen et al. [1993] list precise chemical quantities for each release. Figure 3 provides an

overview of the release and observation locations on a map of the Caribbean. The lines of

sight are directed looking toward sunrise from the nightside of the terminator. Each release

occurred in sunlight, with the exception of G-11B, a critical ionization velocity (CIV)

experiment which occurred in darkness just to the nightside of the terminator.

TABLE 2. CRRES Caribbean Campaign Release Events

Date Time Label Canisters Release location Aircraft location Range to
UT lat'N lon'E ah(km) lat'N lon'E release, km

July l3, 1991 08:35:23 G-1 One small 17.8 297.1 495 12.90 292.51 903

July l9, 1991 08:37:07 G-9 Twolarge 17.4 297.2 441 13.04 292.64 837

July22,1991 08:38:21 G-11A Onesmall 16.8 299.7 411 13.01 291.99 1039

July25, 1991 08:37:10 G-lIB One small 17.3 290.5 478 16.37 285.16 757

Aug 12, 1991 09:31:18 G-12 Twosmall 9.1 296.5 507 14.99 289.52 1154

G-lIB, a Critical Ionization Velocity experiment, occurred in darkness just to the nightside of
the terminator. All others were in sunlight. Aircraft altitude was 10 to 12 km. Aircraft velocity
was approx 200 m/s (400 knots), roughly perpendicular to the line of sight.

In each case the azimuth and elevation coordinates of the imaging field of view were

aligned to the predicted release point, providing characteristic initial measurements such as the

example of G-12 video images presented in Figure 4. Wide-field and narrow-field images at 8,

19, and 28 seconds after this release show the early ion cloud evolution. The barium neutral

population, not visible through these filters, expands spherically as its bulk velocity follows the

satellite orbit. In sunlight the neutrals photoionize with a time constant on the order of 28

seconds, leaving behind an expanding cone of BaII stopped in the geomagnetic field. The

fringes from the 2-mm Fabry-Perot eta/on in the narrow-field view reveal a double peak in the

ion radial velocity distribution during this time regime. Figure 5 shows Fabry-Perot images

from G-9 selected at times sufficiently after release for the ion spread to fill the field of view.

The decrease of fringe width during the fin'st minutes is clearly evident. The quantitative

interpretation of these fringes as Doppler velocity distributions is discussed in the following
paragraphs.

5
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Fabry-Perot interferometry. The principles of Fabry-Perot interferometry are presented in

many optics textbooks (e.g. Born and Wolf, 1980). Briefly, the constructive interference of

multiple internal reflections within a solid etalon causes monochromatic fight to be

preferentially transmitted at given angles away from normal incidence, resulting in a pattern of

concentric circular fringes with maxima obeying the expression

2 T costp = m _. (1).

Here T is the equivalent air gap thickness of the etalon, which is the physical thickness

multiplied by It, the index of refraction of the etalon material. Lambda is the wavelength, m is

the order of interference (an integer), and tp is the angle of refraction within the material.

Successively larger values of tp satisfy this equation for orders m-l, m-2, etc., giving rise to

fringes of successively larger angular radii. If _0 satisfies (1) at an internal angle of incidence

tp0, then the fringe radius for ;_0 + fix in the same order can be found by differentiation of (1).

The external angle of incidence follows from Snell's law. The corresponding Doppler velocity

v = c A_. / _. (2)

of a given emission line can thus be measured by the change in fringe radius. In (2), v is the

radial velocity and c is the speed of light (v << c). A receding (redshifted) source is found to

result in a fringe of smaller radius than that of a stationary source (e.g. a local calibration

lamp).

The free spectral range (FSR) of an etalon at a given wavelength is the value of fix, or

equivalent radial velocity, which would shift a fringe to the position of the next order fringe. A

radial velocity spread in excess of the FSR will cause fringes to overlap. For our T = 2ram

etalon, the order m for _. = 455.4nm (Bail) is roughly 2 x 2mm/455.4nm, or -8800. A change

in wavelength of 455.4nm/8800, which is 0.052 nm, would produce an identical fringe

pattern, with the order m stepped by one unit. The simple expression for the FSR is _.2/(2T).

The equivalent Doppler velocity in this example is c/8800, or 34 km/s. Absolute velocities of

the observed barium ions are determined relative to the fringes of the zero-velocity 455.4-nm

emission line from the BaII calibration lamp. Figure 6 illustrates these results for the three

etalons used. The video images are digitized, the fringe pattern center is determined, and radial

profiles are measured and plotted. In this example we compare the profile calculated for an

infinitely narrow line with measured prof'des from the calibration lamp and profiles from

representative barium images obtained many minutes after release. A spurious neon emission

in the calibration lamp appears within the 3.5-nm width of our 455.4-nm filter, producing an

additional fringe which does not materially interfere with establishing the barium line zero-

6
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velocity radius on the images. (A laboratory spectrometer measurement found this line to be

1.0 nm shorter than the Bali line.) The width of the fringe for an infinitely narrow line is a

function of etalon surface reflectivity, which is enhanced at the operational wavelength by

appropriate multilayer coatings. Finer velocity resolution is thus obtained at the expense of a

decreased intensity throughput. The ratio of free spectra/range divided by this fringe width is

generally termed the transmissive finesse, NT.

Temperature stabilization is required to maintain a constant value for an etalon's effective

thickness T. The fused silica index of refraction, t.t = 1.465, increases with temperature by

-10 -5 per degree C (near room temperature). A change of one degree C moves a fringe by the

same amount as would a wavelength change of-10-s)t, equivalent to a Doppler shift of 10-5c,

or 3 krn/s. The calibration lamp is activated every few minutes to monitor temperature stability.

The effect of thermal expansion in this substrate is an order of magnitude less significant. The

radial dispersion for Doppler shift (km/s per pixel) is effectively independent of effective

thickness T. The fringes may appear to exhibit inherent small departures from circularity or

concentricity over the full field of view due to geometric distortions in image acquisition,

reproduction or digitization, therefore the respective calibration image fringes must always be

used as fiducials for zero velocity. The above considerations are important for realizing the full

precision of this measurement technique.

Double-peak velocity distribution. In Figure 7 we display the early time evolution of the

ion Doppler velocity for releases G-9, G-11A, and G-12. Profiles of the innermost (highest

resolution) fringe from 2-mm eta/on images acquired during the first minute or two after each

release are stacked to make the trends most evident. The bottom profile in each series is of the

calibration lamp, used to locate the zero-velocity position (right hand peak of the lamp profile is

Bali, left hand peak is a neon line). The abscissa is linear in image-space, labeled in Doppler
velocity.

Profiles from the first minute of G- 11A and G- 12 clearly show the double-peaked velocity

distribution which is expected to arise from the ion gyromotion component toward and away

from the observing point. Profiles of the much larger G-9 release have a more uniform

intensity across the Doppler spread. The initial G-9 and G-11A distributions are spread _+7to 8

krn/s centered around the zero-velocity wavelength, while the G-12 profiles show a smaller

spread and are red shifted 4 to 5 krn/s. A quantitative demonstration that this behavior is

expected requires some detailed modeling of the chemical release velocity and geometry. This
modeling is described in the next section.
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MODELING THE DOPPLER PROFILEAND ENERGY LOSS RATES

The release observation geometry is described by four vectors, referring to the satellite

velocity, the solar direction, the local geomagnetic field direction, and the line-of-sight or

"look" direction. These vectors are given in Table 3 for each event, in terms of azimuth and

elevation at the release point. (The satellite orbital velocity vector is given in the earth-rotating

frame.) Angles between the various pairs of directions are also listed. The geometrical

situation is sketched pictorially for G-9, G-11A, and G-12 in Figure 8. For G-9 and G-11A

both the satellite velocity vector and the look direction are nearly perpendicular to the magnetic

field, while for G- 12 a larger component of the release velocity is up the field line (southward)

and the look direction is within 33 degrees of being up the field line.

TABLE 3. Local geometry at each release point.

G-1 G-9 G-11A G-11B G-12

Satellite velocity, V
azimuth, deg 91.6 94.2 96.7 95.0 106.2
elevation, deg -6.8 -5.5 -3.1 -6.0 7.2
velocity, km/s 9.6 9.6 9.6 9.6 9.5

Magnetic field, B
azimuth, deg 348 348 347 352 350

elevation, deg -46.5 -45.9 --44.3 -47.2 -35.8
flux density, nT 31,500 32,000 32,000 32,000 27,500

Direction to Sun

azimuth, deg 60.4 61.5 63.3 59.7 73.0
elevation, deg -15.4 -15.7 -13.9 -21.7 -9.0

Direction to aircraft

azimuth, deg 222.8 226.1 244.0 260.4 311.4
elevation, deg -35.7 -34.1 -26.8 -40.7 -29.8

Angles between directional vectors
l_z)ok-Sun, deg 53.7 51.9 40.7 65.3 68.3
Ix>ok-V, deg 62.5 60.3 43.5 48.6 32.8
Ix)ok-B, deg 95.8 95.4 99.9 117.8 147.3

V-Sun, deg 31.8 33.7 34.7 37.6 36.3
V-B, deg 94.1 97.0 101.7 94.2 115.5
B-Sun, deg 66.6 67.2 70.6 59.2 79.2

Look direction is opposite of direction to aircraft.
Some numbers are from Stenbaek-Nielsen et al. [1993].
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Taking the initial G-9 barium cloud velocity to be the satellite velocity vector at the time of

release, the ions are created at a pitch angle of 97 degrees, with vii at 1.18 km/s southward and

v t. at 9.46 km/s. The angle between the magnetic field and the camera look direction is 95.6

degrees, giving an apparent radial component of gyromotion equal to 9.46 x sin(95.6) = 9.41

kin/s, both toward and away from the observer. For G- 12 the parameters are vii = 4.17 km/s

southward and v± = 8.46 km/s. The viewing direction is 32.8 degrees relative to the magnetic

field, giving plus and minus 4.58 km/s for the radial component of the gyromotion. The radial

component of vii is 3.50 km/s away from the aircraft, causing the observed shift of the G-12

velocity profile (Figure 7).

For modeling purposes Bernhardt [1992] assumes a neutral barium release cloud to be a

shell centered on the satellite orbit track, expanding at a radial speed Vr = 1.38 kin/s, with the

shell thickening at a rate Vt = 0.26 km/s. In our modeling we adjust the Vr parameter to fit

ground-based imaging measurements; for example the radial expansion rateVr of release G-9 is

found to be 1.7 krn/s based on video imaging observations from the island of St. Croix. The

ionization rate for barium in full sunlight is 0.0357/s, or 'q = 28 s, and the cloud may be

regarded as optically thin after the far,st few seconds following the release event [Huba et al.,

1992b]. A factor complicating the profile appearance presents itself in the shape of the

illumination source, the solar spectrum, near 455.4 nm. The deep Bali Fraunhofer absorption

is shown in Figure 9, as used by Stenbaek-Nielsen [1989] in a detailed modeling of barium
cloud emission rates.

Monte Carlo simulations. A simulation software routine named PTRACE, developed at

Los Alamos, models the single-particle dynamics within the chemical release cloud. Photo-

ionization, collisions, ion drift, and mirror force are included. Collective plasma effects are not

included in the PTRACE simulation code. A hard sphere model is used for neutral barium

collision with neutral oxygen, and a Langevin potential is used for Ba + collision with O. An

estimate of the density of ambient neutral atoms at the release altitudes is obtained from the

appropriate MSIS model. The density is adjusted for consistency with ground-based

measurements of the drag on the neutral barium cloud (slowing of translational velocity),

which is derived from image differencing. Results of the simulations for G-9 and G- 11A are

shown in Figure 10, plotted in the form of predicted Fabry-Perot profdes at various times

following release, as viewed from the aircraft location. Evolution of the velocity profile shape

is readily apparent during the first few minutes while ions are quickly losing momentum. The

widths of the simulated profiles in Figure 10 compare well with the observed profile widths at

corresponding post-release times displayed in Figure 7. The qualitative shape of the profdes is

also reproduced, showing a more pronounced double-peak structure for G-11A while the G-9

profile is more flat across the top.
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The modeled rates of ion momentum loss due to ion-neutral collisions are illustrated in

Figure 11. Average ion speed is plotted versus time after release for three events. The

differing energy loss rates result primarily from the different ambient neutral atom densities at

the altitude of each release.

The measured rates of ion momentum loss are represented in Figure 12 by plots of the

Fabry-Perot fringe half-width at half-maximum versus time after release. Curves covering the

first six minutes are shown for G-9, G-11A, and G-12. Release altitudes are indicated, and it

is seen that steeper loss rates appear for lower altitude releases. The width of the G- 12 profile

begins at a lower value than that of the other releases because a smaller component of the

satellite orbital velocity is perpendicular to the geomagnetic field. The curves for G-9 and

G-11A, where the release velocities are nearly perpendicular to the magnetic field, are

comparable with the modeled curves in Figure 11. (Results for the PTRACE simulation of

G-12 have not been plotted yet.) The G-9 profile exhibits a sudden dramatic narrowing in the

100 to 120 second interval following release. Interpreting this discontinuity as a sudden loss

of ion momentum, candidate causes are plasma instabilities or wave-particle interactions of a

sort that would abruptly manifest itself when the plasma density decays to a certain level.

Possibly Alfven waves were generated early in the release, and have reflected back from the

southern hemisphere on this time-interval.

Ground based imagery of G-9 shows nothing remarkable occurring in the release cloud at

this point in time. The wide-field camera images from the aircraft, co-aligned with the Fabry-

Perot instrument, show the barium ion 455.4-nm emissions continuing to dim at a regular rate.

The images also show that no appreciable change occurred in the camera look direction over the

interval in question. Sets of these images are displayed in Figure 13. The third wide-field

image appears brighter because the CCD frame integration time was doubled at this point to

keep the fading cloud intensity within the instrument dynamic range.

DISCUSSION

10
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FIGURE CAPTIONS

Figure 1. Lockheed Fabry-Perot camera optical set-up for the CRRES low-altitude Caribbean

campaign. Camera installation was along the aircraft fuselage, facing into a large elliptical

gyro-stabilized pointing mirror stationed at one of the 30-inch diameter optical grade windows.

Figure 2. Camera fields of view. Orion's belt shows relative alignment and scale. Both

images are in white light (filters removed). The Fabry-Perot wheel is in the no-etalon position.

Both fields are mirror-reversed, and one camera is inverted relative to the other.

Figure 3. Caribbean release area. Location of barium releases and corresponding aircraft

coordinates at the time of each release are shown. Views of the releases are looking toward

sunrise from the night side of the terminator. A few minutes after each release the direction of

flight was slowly changed to follow ions southward along the magnetic field. Aircraft were

temporarily based on the island of Aruba near the coast of Venezuela.

Figure 4. G-12 barium release filtered image sequence. Wide-field and narrow-field images at

8, 19, and 28 seconds after release show the ion cloud evolution. Fringes from the 2-mm

Fabry-Perot etalon in the narrow-field camera reveal the double-peaked nature of the ion radial
velocity distribution.

Figure 5. Selected Fabry-Perot images from the G-9 release. The time after release is

indicated for each image. The decrease of fringe width is clearly evident.

Figure 6. Fabry-Perot images and profiles from the G-9 release illustrate the differing free

spectral ranges for the 8-mm, 2-mm, and 0.5-mm etalons. Calibration lamp images and

profiles provide the zero-velocity fringe radii (a spurious neon emission line in the lamp is

disregarded). Profiles calculated for an inf'mitely narrow line are shown for comparison.

Figure 7. Fabry-Perot profiles from 2-mm etalon images: Stacked series from the first minute

or two of releases G-9, G-I 1A, and G-12. Profiles are truncated after the innermost (highest

resolution) fringe. Times are indicated. The bottom profile in each series is of the calibration

lamp, used to locate the zero-velocity position. As in the previous figure, the abscissa is linear

in image-space, but labeled in Doppler velocity.
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Figure 8. Release geometries: Azimuthal plane projections at the release points, with north

upward, of the satellite velocity vector, the geomagnetic field direction, and vectors toward the

sun and toward the observer, for the G-9, G-11A, and G-12 releases. Ion trajectories

southward along the field lines are illustrated schematically.

Figure 9. The solar spectrum in the vicinity of the 455.4-nm BaII resonance ('Fraunhofer) line.

Intensity is given both in W/m2/nm and as a fraction of the solar continuum, versus wavelength

(angstroms) and the corresponding Doppler velocity. [Adapted from Stenbaek-Nielsen, 1989.]

Figure 10. Monte Carlo (PTRACE) simulations of the Fabry-Perot Doppler profiles for G-9

and G- 11A as would be observed from the aircraft at four different times after release. The

narrowing of the modeled profiles with time represents energy loss from ion-neutral collisions

only. Modeled profiles compare well with observations shown in Figure 7.

Figure 11. Average ion velocity vs time after release, for three events, as modeled by the

PTRACE Monte Carlo simulation code. Momentum loss calculations are due to ion-neutral

collisions only, where the ambient neutral atom population varies with altitude.

Figure 12. Observed ion velocity decrease with time during the fin'st six minutes following

three releases. The early energy loss rate is steepest for G-11A, released at the lowest altitude,

and shallowest for G-12, released at the highest altitude, an ion-neutral collisional effect. The

width of the G-12 profile begins at a lower value than that of the other releases because a

smaller component of the satellite orbital velocity is perpendicular to the geomagnetic field.

Figure 13. Wide field and Fabry-Perot image data obtained during the sudden ion energy loss

observed in the G-9 release. The wide field images verify that no appreciable change in the

camera look direction was responsible for the rapid decrease in fringe width. No qualitative

change in the structure of the wide field barium ion scene is evident. (The third image is

brighter because the frame integration time was doubled at this point.)
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FIGURE 2. Camera fields of view. Orion's belt shows relative alignment

and scale. Both images are in white light (filters removed).

The Fabry-Perot wheel is in the no-etalon position. Both fields are

mirror-reversed, and one camera is inverted relative to the other.
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FIGURE 3. Caribbean release area. Location of barium releases and

corresponding aircraft coordinates at the time of each release are shown.

Views of the releases are looking toward sunrise from the night side of

the terminator. A few minutes after each release the direction of flight

was slowly changed to follow ions southward along the magnetic field.

Aircraft were temporarily based on the island of Aruba near the coast
of Venezuela.



CRRES BARIUM RELEASE G-12
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09:31:47 (+29S)
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FIGURE 4. G-12 barium release filtered image sequence. Wide-field and

narrow-field images at ~9, 19, and 29 seconds after release show the ion

cloud evolution. Fringes from the 2-mm Fabry-Perot etalon in the

narrow-field camera reveal the double-peaked nature of the ion radial
velocity distribution.



CRRES BARIUM RELEASE G-9 07-19-91 08:37:07 UT

08:37:39 (+32s) 08:38:26 (+lm 19s)

08:37:42 (+35s) 08:42:31 (+5m 24s)

08:38:10 (+lm 3s) 09:34:19 (+57m 12s)

FIGURE 5. Selected Fabry-Perot images from the G-9 release. The time

after release is indicated for each image. The decrease of fringe width

is clearly evident.
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FIGURE 9. The solar spectrum in the vicinity of the 455.4-nm BaII resonance

(Fraunhofer) line. Intensity is given both in W/m2/nm and as a fraction

of the solar continuum, versus wavelength (angstroms) and the corresponding
Doppler velocity. [Adapted from Stenbaek-Nielsen, 1989.]
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Figure 12. Observed ion velocity decrease with time during the

first six minutes following three releases. The early energy
loss rate is steepest for G-IIA, released at the lowest

altitude, and shallowest for G-12, released at the highest

altitude, an ion-neutral collisional effect. The width of

the G-12 profile begins at a lower value than that of the

other releases because a smaller component of the satellite

orbital velocity is perpendicular to the geomagnetic field.



CRRES BARIUM RELEASE G-9 07-19-91 08:37:07 UT

Widefield Camera Fabry-Perot Camera

08:38:51 (+104s) 08:38:51 (+104s)

08:38:59 (+112s) 08:38:59 (+112s)

08:39:13 (+126s) 08:39:13 (+126s)

Figure 13. Wide field and Fabry-Perot image data obtained

during the sudden ion energy loss observed in the G-9

release. The wide field images verify that no appreciable
change in the camera look direction was responsible for the

rapid decrease in fringe width. No qualitative change in the

structure of the wide field barium ion scene is evident.

(The third image is brighter becaus_ the frame integration

time was doubled at this point.)



APPENDIX C

Report

CRRES Program G-6 Release

by

S.B. Mende



CRRES Program G-6 Release

by S. B. Mende

Contract number." NAS-8-36630

12 February 1991, 04:15:00 UT

EXPERIMENT OBJECTIVES: Stimulation of Ion-Cyclotron Waves and Artificial Ion

Precipitation

Principal Investigator: S. B. Mende

Collaborative Investigators: P. Bernhardt, G. Haerendel, T. Fritz, W. Peterson E. Wescott,

D. Papadopolous, R. Smith, M. Pongratz, D. Simons,
A. Valenzuela, R. Anderson

Location: Approximately 6 Re outside plasmapause on field line accessible
to Millstone Hill Radar.

Time: Pre-Midnight Local Time Sector (2200-2400 LT)

Other Conditions:

Chemicals:

Darkness over North America, Local Plasma Density N < 1/cm 3

20 kg. Lithium (2 Large Canisters)

It is expected that the pre-midnight sector will be dominated by energetic protons which precipitate
to form the pre-midnight proton aurora. The injection of an artificial cloud of cold Lithium plasma
will lead to the generation of ion-cyclotron waves and these waves, in turn, will scatter protons
into the loss cone leading to enhanced proton aurora. The enhanced precipitation will be detected
by optical instruments at the foot of the field line and the CRRES/GTO wave and particle
instrumentation will aid in determining the optimum conditions for release.

POINT OF CONTACT: Steve B. Mende
LPARL
3251 Hanover St.

0/91-20, B/255
Palo Alto, CA 94304

SPAN - LOCKHD::MENDE

PHONE (415) 424-3282
FAX (415) 424-3333

EXPERIMENT ELEMENTS: Coordinates of Release: 4.9N 76.1W 32249 km

Canister Type: Large
Chemicals:

6A TI 5770 gms, B 2604 gms, LI 457 grns, EU 299 gms
6B TI 5767 gms, B 2603 gms, LI 457 gms, EU 299 gins

Delay: None



RELEASESTRATEGY

The originalgoalsof this releasewereto enhanceion cyclotronwavesandtherebyinduceproton
precipitation in the pre-midnightauroraloval. However, theearlier G5 releaseon the 18thof
Januaryfailed to make a detectableelectronprecipitation event using whistler mode wave
enhancementsthroughcoldplasmaseeding.Thusit wasarguedthata successfulrepeatof theG5
releaseexperimentwouldhavesatisfiedthecoldplasmainducedprecipitationgoalsof theCRRES
programandtheG-6 releasewasattemptedto bereleasedin conditionswhichwould satisfyboth
theG5 andG6 requirements.

The experimentreleasedproducedalargeion cloud. SinceLithium ions areinvisible, therewas
relatively little emphasisin monitoringthecloud developmentoptically. The importantoptical
observationsweremadeby thetwo instrumentedaircraftswhichmadeobservationsof theaurora
at thefoot of thefield line. If theexperimentworked,thehot electronswhichweremeasuredin
situ by the spacecraftshouldhavebeendisturbedby thecold plasmaand the wavesproduced
insideof thecloudshouldhaveprecipitatedcausingtheartificial auroras.Theairplaneswereused
to assurethat theobservationswerenotobscuredby clouds. Operationally,the satellitecontrol
centergavethereleasecommand.

RELEASECONDITIONS

For the successfulreleaseand detectionof cold plasmainjection producedprecipitation, we
requiredsomeverystringentreleaseconditions.

Thereleaseconditionswereasfollows:

1. Lackof ambientcold plasma.Ambientplasmadensityasmeasuredby thesatelliteshouldbe
less than 1 - 2. This condition was monitoredby the University of Iowa experiment( R.
Anderson).

2. Abundanceof hotplasmamainlyenergeticelectrons.This wasmonitoredby theLockheedor
theAFGL experiment.Thefollowing basicconsiderationsapply:

Synchronousaltitude particleswhich are requiredto createplasmasheetprecipitationcan be
obtainedfrom Eatheret a1.[1976].Accordingto this,theplasmasheetprecipitationisprobablyof

•theorderof 1ergs/cm2/secprecipitationenergyflux. This is equivalentto about200Rayleighsof
4278andperhapskR of 557andprobablyabout3kRof whitelight.

This energy intensity is equivalent to 1/_ times this value or in particle flux per steradian, it is .318
ergs/cm2/sec/sterad.

Thus, the .318 ergs/cm2/sec/sterad is equivalent to 2 x 1011 eV (1.6 x 10 -12 ergs/eV). Table 1
summarizes the required flux levels for various particles of different energy.



Omnidirectionalenergyflux of 2.0x 108 keV/cm2/sterad/sec

Particles of energy_ Total Particle flux Flux __r k_V

lkeV 2.03 x 108

2keV 1.04 x 108 5.20 x 107/keV

5keV 4.17 x 107 8.53 x 106/keV

10keV 2.03 x 107 2.03 x 106/keV

20keV 1.00 x 107 5.00 x 105/keV

These fluxes are absolute minimum for release criterion. During big substorms, the particle
intensities go up by factors of 10 and 20.

The release had to be initiated 30 minutes prior. The G6 release was called around 3:45 UT to take
place at 4:15. The release was called on the basis of geophysical parameters which would assure
that the above conditions were met.

Although for a Lithium release the weather at the ground sites was not critical, the STC operation
center monitored the weather. The weather is summarized in Table 2.

3. No discrete aurora. (Absence of confusing auroral precipitation at the foot of field line)

!_i!i!?iiiii!iii!! !i:!:i i!i!!!i!i!!5!!ii!i!!i!!i!!iiiii!_!ii!ii!i .".:-!!_! ! ! ! ! !?."! i i !:i!_:_!iii!iiiiiii!ii i i i_iiii_! 5!i! i_iiiiiiiiiiiii_i_!i!iiiiiiiiiiiii_:_i_i_:iiiii_i:_ii_._iiiii!iiiiiiiiiiiiiiiiiiiiiiiiiii_iiii i iii iii i ii i ii i iiiiii i i_ i 3_i _ i_i3i i _i ii i : ii ! i i i ! i ! _3_i _ __i i ___ :i : : : i_:

ii:,iiiii:   iil

TLrne St Croix Arecibo Bonaire El Leon Cerro

2:11 Cld 50%

2:38 Clearing
3:00 Clearing
3:05 90%clear
3:26

4:38 90%clear

o.cast Few clouds Bad
OK
60%clear
60%clear

not good

Bad Good

Clearing

Tune Godd_d Wht Sands Los Alamo_

2:11 90%clear 60%clear clear
2:38

3:00 good O. cast Thin clouds
3:05 80%clear good
3:36

4:38 Bad OK

Lincoln Lab

clearing

At the STC operation center, the satellite auroral electron and cold plasma density were also
monitored. The cloud release was based on these parameters. These parameters were documented
as a function of time in Table 3.



iiJ_i)iii_iiiii_iiiii!iii_ii_iiiiiiiiiJiiiiiiiiii!i_!_i_iii_iiii_iii%i_i_i_i_Ji_k_ii_Ji_i_ii__ _,__ _i_ _ _i̧_ ...._iiii_i_

Aurora GLf GL Iowa

_wne _ 5577 _ ans_

2/11 18:56 1.1 x 109
19:16

01:56 3 _ 2
02:26

02:30

02:31

02:35 3

02:55 4

03:00 4

2.0

Diffuse
aurora

4kR

2.4 x 109 1.9 x 10 9

streamers

decreasing
2.5 x 109 2.0

2.1 x 109 1.4 x 10 9 2.0

streamers strong
gone AKR
1.8 x 10 9 1.2 x 109 2.0

AKR

2.7 x 109 1.9 x 10 9 2.0

03:09 2.7 x 10 9 1.8 x 10 9

03:15 4 1.8 x 10 9 1.4 x 10 9 2.0
03:30 6kR

post
break op

03:40 4 1.1 x 10 9 9.3 x 10 9 1.5
AKR

04:37 1.8-
3.5kR

pulsating
05:03

03:59 8.4 x 10 8 7.1 x 10 8

04:05 7.5 x 10 8 6.2 x 108

04:10 8.2 x 10 8 6.7 x 108

04:15 7.2 x 105 5.6 x 10 5

04:18 5.9 x 10 8 4.8 x 10 8

04:23 7.4 x 10 8 4.4 x 10 8

04:28 5.4 x 10 8 4.0 x 10 8

04:32 5.2 x 105 3.9 x 105

It can be seen that the electron threshold was above the 2x10 8 keV/cm2/sterad/sec. An additional
consideration for the release was the position of the satellite. In Table 4, we summarize the satellite
parameters near apogee.



02/12/91 04:00:00 491 5.65 74.77 31535. 145. 157. 16.39 356.08 22:44 6.592 10.15
02/12/91 04:15:00 491 4.93 76.25 32242. 135. 147. 15.65 354.56 22:54 6.662 08.67
02/12/91 04:30:00 491 4.24 77.81 32797. 127. 140. 14.92 352.96 23:03 6.708 07.37
02/12/91 04:45:00 491 3.55 79.43 33203. 122. 135. 14.20 351.32 23:13 6.730 06.25
02/12/91 05:00:00 491 2.87 81.09 33462. 117. 131. 13.46 349.64 23:22 6.728 05.35
02/12/91 05:15:00 491 2.19 82.76 33576. 115. 129. 12.73 347.94 23:31 6.704 04.70
02/12/91 05:30:00 491 1.51 84.45 33545 113. 129. 11.98 346.25 23:41 6.658 04.32
02/12/91 05:45:00 491 0.83 86.12 33370. 113. 130. 11.22 344.57 23:50 6.589 04.25
02/12/91 06:00:00 491 0.13 87.77 33049. 115. 132. 10.44 342.93 23:59 6.500 04.50
02/12/91 06:15:00 491 -.58 89.38 32581. 118. 136. 09.64 341.35 00:09 6.388 05.05
02/12/91 06:30:00 491 -1.31 90.92 31962. 122. 142. 08.82 339.83 00:19 6.255 05.89

02/12/91 06:45:00 491 -2.06 92.39 31189. 128. 150. 07.97 338.41 00:29 6.100 07.00
02/12/91 07:00:00 491 -2.84 93.74 30256. 137. 161. 07.09 337.10 00:40 5.923 08.34
02/12/91 07:15:00 491 -3.67 94.95 29158. 150. 175. 06.18 335.95 00:51 5.722 09.92
02/12/91 07:30:00 491 -4.54 95.98 27887. 166. 194. 05.23 334.99 01:03 5.498 11.71

For the positioning of the air plane several field models were evaluated for the time of the release.
The 4:15 position of the foot of the field line is shown in Table 5. Note at the time of release, the

qK_was 4, therefore, it is the last line of Table 3 which is applicable. This model is based on the
model.

On Figure 1, we show the Millstone Hill radar convection plots. The Millstone Hill group has also
inserted their prediction of the foot of the field line for 04:15 UT. The convection plot was
generated from data taken at 04:05.

SUMMARY

The G6 release did not accomplish its stated scientific goals and the results are inconclusive.
Operationally every condition was satisfied. The ambient cold plasma density was down to 1.5

electrons per cm _, the energetic electrons were above the 2 x 108 keV/cm2/sterad/sec threshold.
However it was very difficult to predict the situation in advance and the auroral situation over the
airplanes were very confused at the time the effect should have manifested itself. A small

enhancement in the aurora, which was expected to occur following the plasma injection could not
be detected in the presence of the natural auroral displays which occurred. Just before calling the
release at 04:37 the airplane reported auroral pulsations of 1.8 - 3.5 kR in strength. It was hoped
that this level of aurora would not be detrimental to the observations and that it would weaken with

time. This weakening did not occur. Thus the G6 release experiment could not be used to show
that cold plasma releases can be responsible for increased precipitation.
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Field Line Base (100 Km Height) is:

p .,.m

KP=
KP=

KP=
KP=
KP=
KP-
KP-
KP=
KP=
KP=

0 N.LAT -- 52.09 E.LONG = -77.92

0+ N.LAT- 52.80 E.LONG = -78.01
1- N.LAT = 52.66 E.LONG -- -78.03
1 N.LAT- 52.52 E.LONG-- -78.08
1+ N.LAT= 52.45 E.LONG-- -77.99
2- N.LAT = 52.36 E.LONG - -78.07
2 N.LAT= 52.13 E.LONG- -78.09
2+ N.LAT- 52.31 E.LONG- -78.07
3- N.LAT= 52.05 E.LONG = -78.07
(3,3+) N.LAT = 51.76 E.LONG - -78.07
>3+ N.LAT= 51.21 E.LONG-- -78.27
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APPENDIX D

Report on CRRES Program G-4

Release by S.B. Mende



EXPERIMENT G-4
By S. B. Mende

16 January 1991, 06:25:00 UT

EXPERIMENT OBJECTIVES:

Principal Investigator:

Collaborative Investigators:

Location:

Time:

EXPERIMENT ELEMENTS:

Model Calculations:

Diamagnetic Cavity, Plasma Coupling

S. B. Mende

M. B. Pongratz, D. Papadopolous, R. Smith, R. Anderson, Young,
H. Singer, E. Szuszczewicz, E. Wescott, H. C. Stenbaek-Nielsen,
G. Haerendel, A. Valenzuela, P. A. Bernhardt, J. D. Huba.

0.7 degrees S, 53.8 degrees W

06:25:00 UT.

Coordinates of Release: 0.7S 53.8W 23977 km

Canister Type: Small
Chemicals: TI 1271 gms, B 574 gms, BA 1471 gms, SR 19 gms
Delay: None

Ted Fritz
LANL
MS-D438

Los Alamos, NM 87545

SPAN - ESSDP1 ::FRrI'Z

PHONE (505) 667-9234
FAX (505) 665-3332

POINT OF CONTACT: Robert Hoffman
GSFC CODE 696

Greenbelt, MD 20771

SPAN - DE696::U6RAH

PHONE (301) 286-7386
FAX (301) 286-9240

STATION COVERING THE RELEASE:

Caribbean - St. Croix, USVI Arecibo, PR

North America - Boston, MA Long Key, FL Los Alamos, NM White Sands, NM
South America - Cerro Tololo, Chile E1 Leoncito, Argentina

Note: The results of the G-4 release and its relationship to G-2 and G-3 are summarized in the
following report.



CRRES G-4 Release Triangulation and its Relationship to the G-2 and G-3
Releases

S. A. Fuselier, S. B. Mende 7-22-93

From 13 to 16 January, 1991, a series of 3 small barium canisters were released by the
CRRES spacecraft at different altitudes. The objectives of this series of releases were to

study diamagnetic cavity formation, unstable velocity distribution and coupling of the
cavity to the ambient plasma. Table 1 shows the dates, times, geographic coordinates and
altitudes of the three releases.

Name

G-2
G-3
G-4

Date

13 Jan 1991
15 Jan 1991
16 Jan 1991

Time

0217:03 UT
0411:00 UT

0625:00 UT

Latitude

16.9 °
17.9 °
-0.7 °

Longitude [ Altitude

-103.1 ° 6,180 km
-97.5 ° 15,063 km
-53.8 ° 23,977 km

This report describes the results of the G-4 triangulation. However, the relationship
between this release and the other two in Table 1 is important for understanding the
coupling of the cavity to the ambient plasma. Therefore, this report also contains a
comparison of the G-4 releases with the other releases in the series.

Several ground stations participated in the G-4 release. However, not all stations
provide favorable baselines for triangulation of the cloud. The plasma cloud that forms in a

barium release of this type striates along the magnetic field, which is approximately
perpendicular to the equator in geographic coordinates. Newly formed barium ions are

relatively free to move along the magnetic field but motion perpendicular to the magnetic
field direction is controlled by the coupling of the plasma cloud to the ambient plasma.
Understanding this coupling is a major objective of this series of Barium releases, so it is

desirable to obtain the motion of the cloud perpendicular to the magnetic field (through
triangulation from two different ground stations). This favors ground stations with large
east-west ground baselines, and not baselines with primarily north-south baselines.

Triangulation of the G-4 release was initially done using Arecibo (PR) and Long Key
(FL) data. However, these stations were only ~14 ° apart in longitude. Triangulation
errors due to the small lonNtude spread and distance of the release (~4 RE altitude) were
relatively large (-0.03 RE).

To improve the triangulation, we chose to use a larger baseline consisting of Breezy
Point (Los Alamos, NM) and Arecibo (PR) ground stations. These stations have the

advantage that they are separated by almost 40 ° in longitude and, because the Arecibo data

is m video tape form, essentially all images from Breezy Point can be paired with an
Arecibo image.

The drawback of this baseline is that after the first minute, the Breezy Point data does
not have a time code. However, extremely accurate timing (- seconds) was not necessary
since observable changes in the cloud position occurred over time intervals closer to 30

seconds. The station leader for Breezy Point (MorriePongrantz) reviewed the Breeze point
data and, using simultaneous video images taken at the same location, has been able to

reconstruct the time sequence of the Breezy Point images with reasonable accuracy.

We have triangulated the f'wst 7 minutes of data from the two _ound stations. After

this, multiple striations and fading of the cloud caused it to be nearly lost from the Breezy
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Point imagesdespite the fact that thecloud wastracked for over 45 minutesat Arecibo.
Although this appearsto beashortamountof time,it wassufficient to obtain a very good
historyof the cloudmotion anddeducedetailsof the coupling of thecloud to the ambient
plasma.

As with the G-2 release,the triangulationwasdoneusingthe "CRRESTR2"program
in theCRRESdirectoryon theLockheedVICOM computer. The following is a list of the
imagepairswith somebrief comments.Theimagedata files can befound in theCRRES
directoryin thefollowing format:

BP021758 - BP = BreezyPoint,021758= thecentertime of the imagein hhmmss

Also listed arethedatafiles containingthetriangulatedpoints. Thesecanalsobe found in
theCRRESdirectory.

Images Triangulated comments
Arecibo datafilename
AR062502 crrestr0625al.pt Justafterrelease
AR062529 crrestr0625a2.pt,
AR062557 crrestr0625a3.pt
AR062629 crrestr0626c1.pt
AR062656 crrestr0626c2.pt
AR062727 crrestr0627c.pt
AR062806 crrestr0628c1.pt
AR062858 crrestr0628c2.pt
AR062940 crrestr0629c1.pt
AR063028 crrestr0630c1.pt
AR063433a crrestr063lc 1.pt
AR063252 crrestr0632c1.pt

BreezyPoint
BP062501
BP062532
BP062558
BP062631
BP062657
BP062727
BP062806
BP062858
BP062937
BP063029
BP063134a
BP063252

A typical triangulateddata file containsthe triangulated points at a few different
positionsalongtheionizedcloud. SincetheArecibo camera was filtered for the barium ion

line it does not show the neutral cloud(?). At least in the fu'st minute, the Breezy Point data
do not show a separation of the cloud and trail.

Triangulation Procedure

Triangulation was performed using the triangulation computer codes developed for the
AMPTE barium releases [Mende et al., 1989]. Arecibo images were diNtized from video

tape at the Lockheed Palo Alto Research Laboratory. image data analysis facility. Breezy
Point images were digitized from 35 mm film by Mary Miller at GSFC. These digitized
images were copied onto the Lockheed VICOM computer. Using a star catalog on the
VICOM computer with the position of st_s down to 9th magnitude, the star field in the

image was matched and positions of the stars were overlayed onto the video image to verify
that the conversion from video image pixel location to right ascension and declination was

accurate. Once this was accomplished, two stars (relatively far from one another) were
selected as reference stars for the triangulation. The triangulation program used these two
stars to assign right ascension and declination values to arbitrary pixel locations on the
image by linear interpolation. After reference stars for an image pair were selected,

triangulation was performed using software designed to determine the geographic
coordinates of a location on the cloud. An example of a triangulated point on one of the G-

4 release image pairs that illustrates the procedure is shown in Figure 1. The upper panel
of that figure shows the Arecibo image at 0631:33 UT (6 min, 33 s after release) while the
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lower panel shows the Breezy Point image at the same time (note that the images are rotated
relative to one another.

Figure J -3-



To triangulate the point on the image, the operator selects a point on the F_rst image
(shown by the cross in the upper panel of Figure 1), then, using an assumed cloud

distance, the computer swaps images on the video display and draws a line centered on the
assumed cloud distance (initially, this is chosen to be the spacecraft distance) and with

length equal to 0.2 RE on the second image. An example of the line is shown in the lower

panel in Figure 1. This line is centered on an assumed distance of 4.61 RE. The operator
now chooses the location on the second image along the line that appears to correspond

best with the point chosen in the first image. In the example in the lower panel of Figure 1,
this point would be where the line drawn by the computer and the white cloud intersect.
Once selected, the geographic coordinates of the triangulated point are stored in a data file.
The process is repeated until several points along the cloud are triangulated.

The fact that the line drawn by the computer and the cloud are nearly perpendicular is

simply the result of the fact that the baseline is nearly east-west while the cloud striates

along the nearly north-south magnetic field. For north-south baselines, the angle between
the line and the cloud would be much smaller and would result in significant uncertainty in

the triangulated position.

Because of the large distance between the observer and release point, the uncertainty in
the measurements was relatively large for the G-4 triangulation. The error was reduced

somewhat by using a large baseline (one of the largest available) than the other releases
(discussed below). The error in the triangulated measurement appears to be about 0.008

RE based on the scatter in the points used to define the center of the cloud and on the

computed distance between adjacent pixels on the image.

To illustrate the improvement in the triangulation procedure when the cloud distance is
much smaller, Figure 2 shows a pair of images taken approximately 1 minute after the G-2

release. The upper panel of Figure 2 shows the digitized image from Rosemary Hills (FL)
while the lower panel shows the digitized image from Breezy Point. The baseline is
somewhat smaller but still comparable to the baseline used in the G-4 triangulation and the
identical camera system was used at Breezy Point for both the G-2 and G-4 releases. The
cross in the upper panel in Figure 2 shows a selected position on the Rosemary Hills image

while the lower panel shows the 0.2 RE long line centered on the assumed distance (in this
case, 1.97 RE). Comparing the lower panels of Figures 1 and 2, it is clear that the
uncertainty in the cloud position due to the finite size of a pixel on the image is much
smaller for the G-2 release near the Earth compared to the G-4 release almost 2.5 times

further away.
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Analysis of Triangulation Results

Early chemicalreleasesat high altitudes showed that the cloud striates along the local

magnetic field [e.g., Mende et al., 1973]. We use this fact as a consistency check on the
triangulated data and also to simplify the determination of the motion of the cloud with

respect to the background plasma.

As a consistency check, the triangulated positions along the cloud should line up along
the local magnetic field. To test this, we use the model magnetic field contained in the

CRRES spacecraft ephemeris. Differences between the triangulated magnetic field
direction and the model direction indicate that either the triangulation is in error or the model

magnetic field is not correct. In fact, the differences between the two directions for all three
releases were quite small. Table 2 shows the angle between the triangulated magnetic field
direction (Btri) and the model magnetic field direction (Bmoc0 obtained by taking the dot

product of the two vectors. The only large angle is the Fast triangulated direction in the G-
4 release and is the result of the fact that the cloud dimensions were quite small and prone

to large error in the triangulated direction. Otherwise, the triangulated and model magnetic

field direction agree to within 5 to 10°.

Table 2.

G-2 Release
hmmss

21700
21759
21935
22011
22048
22125
22233

22339
22407
22453
22703

13-Jan-1991

Btri'Bmod

(release)
4.7
1.6
1.3
1.0
2.2

3.3
1.8
2.3
2.6

8.8

G-3 Release
hmmss

41100
41200
41231
41300
41331
41400
41500
41600
41900
42000
42100
42202

42303
42400
42505
42600

15-Jan-1991

Btri'Bmod

(release)
1.9
0.6
1.1
5.3
3.7
0.9

3.0
4.8
4.4
7.0

9.4
10.4

9.0
12.1

9.9

G-4 Release
hmmss

62500
62557
62629

62656
62727
62806
62858
62940
63028
63133
63252

16-Jan-1991

Bm'Bmod

(release)
30.4
14.5

5.6

5.7
6.4

10.7
8.7
6.8

10.1
7.0

We also use the fact that the cloud striates along the magnetic field to simplify the
determination of the motion of the cloud. To do this, we note that, collectively, the ions in

the cloud have two motions, perpendicular and parallel to the ambient magnetic field. The

parallel motion presents somewhat of a problem. The fields of view of the cameras that
photographed the clouds were typically small (- few degrees). When the angle the cloud
subtends becomes greater than the field of view of a given camera, only a portion of the
cloud could be tracked. Therefore, different stations usually were tracking different parts

of the cloud. This problem is Lllustmted in Figure 1, where it is evident that the cloud in the
Breezy Point image (lower panel) is not completely contained in the field of view. By

triangulating different parts of the cloud from image pair to image pair as the cameras are
moved to keep some portion of the cloud in the center of the field of view, apparent
motions along the magnetic field are introduced. Because of this, we cannot accurately
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analyzethe motion along the magneticfield exceptin the very early stagesof the cloud
formationandwewant to removethismotionfrom the analysis.

To removetheparallelmotion,wedefineacoordinatesystemwherethemagneticfield
is alongthez-axisandthespacecraftvelocityperpendicularto themagneticfield at thetime
of releaseis along the y-axis. For accuracy,we use the triangulated magnetic field
directionto determinetherotationfrom thetriangulatedgeographiccoordinatesto theB-V±
coordinatesystemalthoughit is evidentin Table2 thatusingthemodelfield wouldproduce
similar results. Finally, we translatethepointsso thatthespacecraftpositionat thetime of
thereleaseis locatedat theorigin. Figure3 illustratesthiscoordinatesystem.

B - V_L Coordinate System

Z(GEO)

/

/

/

/

'SOac ra Loca,,oo,__I at time of release _3_.\

, X,  l EO,/
II k_ X'" Spacecraft"_, Velocity at

time of release

Geographic coordinates
(Earth centered, Z -- north pole,
X .. Greenwich Meridian and Equator)

Figure 3

By rotating into the B-V± coordinate system, we de-couple the motion along the
magnetic field and the motion perpendicular to the magnetic field. Also, since we relate the
coordinate system to fixed locations and directions, we can compare the triangulated

position from image pair to image pair without biasing the comparison. Since we cannot
accurately describe the motion along the magnetic field, we will consider only the

projection of the triangulated points into the x"'-y'" plane.

Figure 4,5, and 6 show the projected position of the triangulated points for the three
releases into the x'"-y'" plane. For the G-2 release, we also had the opportunity to
triangulate the neutral cloud for the fLrst few minutes of the release. As expected, the
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neutralcloud for theG-2 release(Figure4) simply movedin thex"'-y'" approximatelyin
the direction of the spacecraftvelocity vector at the time of therelease. Someresidual
motionin the x'" directionhasnotbeenexplainedat this time.

It is particularly interestingto compare and contrast the G-2, G-3 and G-4 results in
Figures 4, 5 and 6. First, if all uncertainties in the triangulated points were equal, then the
projection of the triangulated points for a given image pair should produce a small cluster in
the x'"-y"' plane centered on the average location of the intersection point of the magnetic
field with that plane. However, all uncertainties are not equal. In the triangulation
procedure, the uncertainties in the dcmrmination of the location perpendicular to the line of

sight arc inherently much smaller than that in the radial direction. Thus instead of a cluster
of points, the projected points form short line segments approximately in the radial
direction. These line segments arc evident in both Figures 5 and 6.

The plasma cloud motion perpendicular to the magnetic field direction was different for
all three releases. For the G-2 release, the plasma cloud simply moved a short distance

from the release point and spent the remaining 10 minutes very close to it. For the G-3
release, the plasma cloud moved away from the release point at about a 45 ° angle for the

fin'st minute and a half, stopped, then moved in the -Vy,,, ,dissection for approximately a
minute and a half and finally drifted approximately in the Vx direction for the remaining 10

minutes. For the G-4 release, the plasma cloud moved away from the release point almost
uniformly for the fwst 6 minutes after the release at which time it stopped. Triangulation

beyond this time was not possible due to the loss of data at the Breezy Point site. We are
currently in the process of analyzing this motion and are preparing a paper on the results for
publication in the Journal of Geophysical Research.
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